
A Method for Constraining State Semantics in
Part-Whole Statecharts

Luca Pazzi, Marco Pradelli

University of Modena and Reggio Emilia
Department of Information Engineering DII-UNIMORE

Via Vignolese 905, I-41125 Modena, Italy
{luca.pazzi, marco.pradelli}@unimore.it

http://dii.unimore.it/emblab

Abstract. Part-Whole Statecharts were originally proposed with the aim of pro-
viding truly modular constructs to traditional Statecharts, in order to allow incre-
mental and fully reusable composition of behavioral abstractions. The hope was
that providing an explicit section for enforcing explicitly the coordinated sys-
temic behavior could bring benefits to subsequent modelling and implementation
phases. The paper presents recent research results, which go beyond the origi-
nal improvements observed in software quality factors. It can in fact be shown
that Part-Whole Statecharts have a computable semantics, which can be speci-
fied through a constraint-driven specification method. Such a method allows to
enforce the intended coordination of component state machines directly at design
time through propositional logic.

1 Introduction

Part-Whole Statecharts [1][2] (shortened either as PW Statecharts or PWS) were pre-
sented, about a decade ago, with the aim of providing Harel’s Statecharts formalism [3]
with truly modular constructs. Various attempts have been made since then in order to
allow the modular, incremental and reusable coordination of behavioral abstractions.
The Syntropy [4] Object-Oriented Development Methodology pioneered in the field by
encapsulating the state behavior of single entities within modules hosted into parallel
Statecharts sections. The Statechart coordination and communication model was then
used in order to assemble a global behavior, by letting the state machine residing on
each module both aware of the current status of the other machines and able to act on
them (in addition to the module on which it resided).

Obtaining a systemic coordinated behavior through such a model has however se-
vere limitations in terms of software quality factors, since the global behavior tends at
being represented in a fragmented form, and as such is difficult to understand, reuse
and maintain. In addition, the operational semantics of such a coordination model is
necessarily ambiguous, since control events bounce from one component to the another
depending on the current status of each one. We will refer to such a way of assembling
AND decomposed modules as the implicit way of coordinating global behaviour.

As an example of implicit coordination, consider the three AND decomposed sub-
states which decompose the state Counting in a typical Statecharts variant (Figure 1-
(a)). It can be observed that each substate, representing a single bit in a counter, is

different from the others, since each one has to embed some knowledge regarding the
global behavior of the aggregation. In particular each bit has to communicate with its
right peer in order to set it to zero or to one, and is in turn set by its left peer. This makes
each “bit abstraction” not self-contained, since it has to refer to another bit and it has
to be referred by another bit in the same fashion, caching the coordination knowledge
within the modules being coordinated.

t1t2

t3
t4

t3

t2

t1
0

1 2

next <b0.inc>

<b0.dec,b1.inc>

next

t3

t2

t1

0

1

inc

Bit

dec

3

t3

t2

t1

0

1

inc

Bit

dec

t4
next <b0.inc>

<b0.dec,b1.inc>

next

b0 b1 cnt

t3

t2

t1 0

1 2

next

next

3

t4
next

next

t5

Mod4Counter

t5

Mod4Counter Mod4StoppableCounter

On Stop

<cnt.next>
stop

start
whole whole

0

1

a
a/b

0

1

b
b/c

0

1

c

Counting

stop start

Mod8Counter (a,start,stop)

b,c

next

Stopped

(a)

(b) (c)

Fig. 1. Comparing Argos (a) and Part-Whole Statecharts (b, c) modelling of bit counters.

Part-Whole Statecharts were conceived with a radical commitment towards mod-
ularity. Solutions which departed radically from Harel’s framework had therefore to

be envisaged. In first place, in order to preserve self-containment, mutual knowledge
among component modules had to be forbidden. Secondarily, a specific section, named
“whole” (referred to in the rest of the paper as the whole section of the PWS) had to
be introduced, with the aim of furnishing the necessary coordination among the non-
communicating component modules. Such a coordination knowledge is provided by a
state machine hosted in the whole section, whose state transition are labelled by events
directed towards the components. Each state transitions may react to events coming
either from outside the PWS, that is from further level of composition in which the
PWS may be employed or from the components. In this way, the aggregation behaviour
amongst component state machines is hosted explicitly in the state machine in the whole
section of the PWS, and in no other places.

For example, the global coordination knowledge amongst the bits making a bit-
counter is drawn explicitly in the whole section of the Part-Whole Statecharts of Fig-
ure 1-(b), where each transition is labeled by a set of events directed towards the differ-
ent bits. It can be observed that the Bit abstractions of Figure 1-(b) are instead totally
self-contained and identical. This allows to reuse them in other contexts with no further
modifications provided an appropriate whole section specifies how the different compo-
nents have to interact. It is finally evident that the designed interaction has four states of
interest, while a similar information would be difficult to infer given an implicit mod-
elling like that of state Counting in Figure 1-(a). Such a feature allows to use the newly
assembled PWS as a component in other PWSs.

A key feature of Part-Whole Statecharts is indeed that composition is recursive.
Each PWS uses PWSs as components and can be used on its turn as a component in
more complex PWS, exposing only an interface derived directly from the state machine
in the whole section, obtained by hiding implementation details. For example, Figure 1-
(c) employs the counter defined in Figure 1-(b) in order to implement some sort of
“stoppable” counter; a less trivial example, concerning timed traffic lights, is developed
along the paper. Some PWS modules need to be obviously primitive, that is they do
not have further component PWSs. A primitive PWS typically acts as a driver to the
hardware or to some physical device. Observe that it makes no differences whether the
modulo-4 counter employed as component in Figure 1-(c) has additional components or
is simply an interface to some hardware device. In both cases the behavioural design of
the stoppable counter deals only with a system having four states and four transitions.

The recursive composition feature marks an asymmetry between the whole and the
component section of the PWS, since component PWSs have to be ready before the
PWS is assembled (this fully complies with COTS software engineering practices). It
therefore results that the communication amongst the lower half coordination section
and the upper component section is asymmetrical, since the whole section knows the
components, but the components need to be totally unaware of the whole section. Such
a feature, together with the observation that a PWS denotes always a single level com-
position, is of paramount importance for compositional state semantics computation
and verification, as further discussed in the paper. The term “hierarchy” in the context
of this work therefore denotes the relationship between the whole section of the PWS
and the the behaviour of its components.

Among the different Statecharts variants, Argos [5] first pioneered the modeling op-
portunities intrinsic in reduced event visibility and asymmetrical communication among
enclosing and refined states. Parallel (AND) state decomposition allowed indeed a com-
positional representation of state machines in Argos, as in Figure 1-(a) representing
a modulo 8 bit counter (adapted from [5] and [6]), where state Counting is refined
into three independent state machines, each representing one bit of the counter. Local
events b and c ensure mutual communication amongst the three decomposed parts of
state Counting but are not allowed to influence external enclosing context, thus yield-
ing behavioral encapsulation of the global behavior of the three bits. Asymmetrical,
non-blocking communication amongst enclosing and enclosed refined states strengthen
such encapsulation capabilities in Argos, and allow external states to act as controllers
towards internally decomposed ones. Finally, we remark that both Argos enclosing and
enclosed states run in distinct, parallel, processes, thus relieving the formalism of cross
level arrows typical of early Statecharts blocking communication, further improving the
understandability of state based abstractions.

The method presented in the paper can be framed also as an offspring of the verifi-
cation technique called Compositional Reachability Analysis [7], which tries to reduce
the search space involved in the verification of properties by “compositional minimisa-
tion”, that is by intermediate simplification of parallel subsystems. Such a simplification
takes advantage from structural properties of modules, for example events which are not
globally observable or states which are locally forbidden are used in order to prune the
global search tree [8]. Our approach allows to check for properties satisfaction by look-
ing only at the immediate upper level of composition, thus involving only a limited
number of state machines. Moreover, the presented technique works by reversing the
traditional verification approach: properties are not verified a posteriori, rather, given
the explicit representation of the desired behaviour, transitions can be added to the ex-
plicit behaviour only in case they do not violate the state constraint of both the starting
and arrival state. Moreover, any uncontrollable event coming from the components has
to be handled by a suitable state transition in order to maintain verified the constraint of
the current state. Verification is therefore carried out at design time, and state constraints
may help the designer in foreseeing non-trivial parts of the behaviour to be built.

The paper is structured as follows: in Section 2 we present a definitive proposal of
related modelling constructs. The semantics of Part-Whole Statecharts is presented in
Section 3, expressed through operations over a boolean algebra of state-based proposi-
tions, an account of which is given in the paper. Section 4 shows finally the method by
which such a semantics can be constrained to match user-defined specifications.

2 Part-Whole Modelling Framework

A PWS is a compound state machine aimed at obtaining a systemic behavior out of
the disjoint, parallel behavior of other PWS state machines, called components, which
will be referred to collectively as assemblage of components (defined in Section 2.2).
Such a systemic behavior is specified through a section of the PWS, called whole sec-
tion (defined in Section 2.3), containing a state machine whose state transitions are

labelled with specific symbols and state conditions, which will be specified in detail in
Section 2.3. We will refer to such a state diagram simply as the whole.

2.1 Transition labelling

Transition labelling is aimed at specifying the allowed interaction between the whole
and the assemblage and to make available newly created systemic behavior for further
reuse and composition. Such an interaction is double way although not symmetric, in
the sense that

1. special compound symbols, named either actions or commands, may be issued from
the whole section state diagram towards components of the the assemblage in order
to ask transitions to happen within it, and

2. transitions happening within the assemblage produce other symbols, named events
towards the whole section and may possibly (i.e., depending on the evaluation of
state conditions associated with the transition) trigger state transition within its state
diagram.

Neither interaction nor mutual knowledge is possible among the components; more-
over, in order to obtain full self-containment, components are not allowed to know any-
thing about the whole. Full knowledge of the interface (defined in Section 2.3) of the
PWSs making the assemblage is instead possible from the whole section of the PWS.

Example Figure 2 depicts a PW Statecharts which implements a very common traffic
light having three states, R (red), G (green) and Y (yellow). The diagram comprises two
main sections, separated by a dotted line, in order to suggest that information exchange
is allowed among the two sections.

The upper half section of the diagram hosts the assemblage of four component
PWSs making the traffic light, that is three identical lamps, which will be referred to
by means of the identifiers l1, l2 and l3, and a timer t. The behavior of each component
PWS is described through its interface, that is the only part of the component PWSs the
modeller is allowed, as well as required, to know. Since the lamp behavior is identical
for the three lamps, it is reported only once to save space in the diagram: it shows that
each lamp may be either in an Off or in an On state and that it is possible to switch
from one state to the another by taking the input state transitions t2 and t3 labelled,
respectively, by the input events on and off. The term “input” suggests that necessary
(but not sufficient) condition for such a transition to be taken is that the corresponding
event has to be issued from the lower PWS section towards the machine containing the
transition, representing therefore an input for such a machine. The timer component
may be instead either in a TOut (timeout) or in a TIn (time-in) state. As in the case
of the lamp behavior, two transitions named t2 and t3 allow to switch amongst the two
states, with the notable difference that transition t3 is drawn and behaves differently,
being an output transition, that is a transition which is not controllable from the lower
section. We adopt the graphical convention of underlining input events and of putting a
small white hollow dot at the beginning of a non-controllable output transition. Finally,
an initial state q0 is present in both diagrams, depicted by a black dot as customary. The

t3

t4

t2

t1

R G Ygo
<l1.off, l3.on> <l3.off, l2.on, t.set>

stop

<l2.off, l1.on>
t.tout

stopped<l1.on>

t3

t2

t1

Off On

on

off

l1, l2, l3: Lamp t: Timer

t3

t2

t1

TOut TIn

set

tout

whole

Timer

TLight1

Lamp

Fig. 2. A Part-Whole Statecharts which describes the coordinated and timed behavior of a traffic
light TLight1 built by assembling three lamps and a timer. The traffic light makes available two
controllable input transitions (go and stop) as well as a non-controllable output timed transition
(stopped) from yellow to red. Rounded corner rectangles emphasize the recursive compositional
flavour of the approach.

initial state is connected by a special state transition (distinguished by a small black
dot at the beginning) to the state the component machine will take at startup. We stress
that the initial state is a state on its own, and not a distinguished state amongst the
other states in the state diagram, for the reasons that will become clear in the following.
For example, state Off is the only state in the lamp component state diagram which is
reachable from the initial state, but it is not the initial state of the lamp diagram.

2.2 Assemblage of Components

Part-Whole Statecharts can be used as components for building more complex ones,
exposing simply an interface defined according to the rules given in Section 2.3. A set
A = {c1, . . . , cN} of component PWSs is called assemblage. The behavior of each
component c ∈ A is described by a state machine whose transition function is given by
δc : Qc × Tc → Qc, where Qc and Tc are, respectively, the set of states and the set of
transitions of c.

The joint behavior of the components of the assemblage can be correspondingly
described by a state machine whose transition function is given by δA : QA × 2TA →
QA, where QA = Qc1 × . . .×QcN

, called the set of of global states of the assemblage

is given the cartesian set of states of the assemblage components and TA is the union
set TA = ∪c∈ATc of the set of transitions of the components of the assemblage. By
adopting the operational model given in Section 2.4, TA is a singleton, that is, at most
one global transition is processed at a time.

2.3 Whole Section

The systemic behavior of the PWS is described by a state machine whose transition
function is given by δW : QW × TW → QW where QW is a finite set of states and
TW a set of state transitions, which will be characterized in details in the next Section.
The whole-section plays different roles within the PWS modeling approach. In first
place it denotes explicitly the global behavior the modeler aims to achieve. Beyond
such an abstract characterization, the explicit representation of behavior allows the state
machine hosted within it to act, at the same time, both as a coordination machine as well
as an interface in using the PWS for further composition.

State Transition Implementation Features The PWS approach requires the whole
section to be able to ask state transitions to happen within the assemblage of compo-
nents as a consequence of state transition happening in the whole and vice versa. Such
an operational behavior is implemented through special symbols and state conditions
associated to the state transitions in the state diagram of the whole section of the PWS,
consisting of:

1. a guard, that is a boolean valued state proposition about the global state of the
assemblage (that is, an expression of the Boolean Algebra of state proposition of
Section 2.5) depicted within square brackets in the state diagram;

2. a trigger, that is a symbol (written underlined in the diagram) which denotes that
the transition will be activated upon the receipt of either:
(a) an event e sent to the PWS by another PWS having the current PWS as com-

ponent, in which case e is named external trigger;
(b) an event c.e sent to the PWS by its component c, denoting the happening of a

transition t labeled by e within the component c of the assemblage, in which
case either c.e or c.t is named internal trigger.

3. a list of commands, where a command is a compound symbol which is used in or-
der to request the activation of a state transitions in the assemblage of components.
A command has the form c.e, meaning that it is required the activation of the ex-
ternally triggerable transition labeled by event e in component c belonging to the
assemblage.

4. an optional output event, that is a symbol which will be sent to all the PWSs which
have the current PWS as component in order to notify them that the transition to
which it belongs happened.

Different state transition typologies are made available within the formalism, de-
pending on the different triggering mechanism:

1. input transitions, having an external trigger specified;

2. automatic/output transitions, having an internal trigger specified;
3. automatic/asap transitions, which have no triggers specified and are taken as soon

as possible according to the operational rules of Section 2.4.

PWS Interface A PWS interface is essentially a state machine obtained from the PWS
by hiding its internal implementation details, as described below. Any PWS may be
used, in a straightforward way, as a component in higher complexity PWSs. It is in fact
possible to extract an interface from any PWS, obtaining a state machine which contains
only the information that may be used by external composition contexts, in other words
the externally observable behaviour of the PWS. Given any PWS state diagram, like
those of Figures 2 and 3, we obtain their interface, used in the example of Figure 4 by:

1. hiding the set of components making the assemblage;
2. hiding any internal trigger, guard, action list from any transition.

Example Consider the state diagram in the whole-section of Figure 2. Transition t1
starts from the initial state of the diagram and is taken automatically at startup. It is
labelled by a single action, namely the one turning on lamp l1 from state Off to state
On. It is possible to have different automatic transitions departing from the initial state,
provided guards have been specified for each transition in order to determine which
one will be executed at run time. In case no guard is specified, the transition is always
chosen for execution. Transition t2 and t3 are input transitions, i.e. they are executed
upon the receipt of, respectively, the events go and stop. The action list associated to
transition t2 specifies that components l1 and l2 have to be turned, respectively, on
and off ; the action list associated with transition t3 specifies, in addition to similarly
turning on and off components l2 and l3, that the timer component t has to begin a time
counting session, moving from state Tout to state Tin. After a definite time interval has
expired, timer t takes transition t.t4, moving back to the timeout state Tout sending
the timeout output event tout towards the whole, triggering the output transition t4. It
then turns components l2 and l1 on and off and additionally, at end, sends outside the
event stopped, in order to notify other PWSs which have the current PWS TLight1 as
component that the transition has been completed. For example, Figure 4 shows how
the traffic lights of Figure 2 and 3 may be further aggregated in modelling a cross road
behaviour. In that case, event stopped from traffic light main is aimed at triggering the
automatic state transition t3. Figure 3 shows a Part-Whole Statechart implementing a
different traffic light behavior. The PWS has been in fact designed to start a full traffic
light cycle upon the receipt of event go, triggering transition t2, that is the other two
transitions, t3 and t4, are taken automatically after two different timeout intervals have
been set. Such a cycle is started, in the context of the cross road of Figure 4, by the
action farm.go which labels transition t3.

2.4 Operational Schema

We give here a brief account of the operational mechanism by which Part-Whole State-
charts operate. The whole section operates through a never ending cycle which iterates

t3

t2

t1

Off On

on

off
l1, l2, l3: Lamp t: Timer

t3

t2

t1

TOut TIn2

setT2

tout

t4
TIn1

setT1

tout
t5

t3

t4t1

R G Ygo
<l1.off, l3.on, t.setT1> <l3.off, l2.on, t.setT2>

t.tout

<l2.off, l1.on>
t.tout

stopping

stopped

(On,Off,Off,TOut) (Off,On,Off,TIn2)(Off,Off,On,TIn1)

(On,Off,Off,TOut) (Off,Off,On,TIn1) (Off,Off,On,TOut) (Off,On,Off,TIn2)

(Off,On,Off,TOut)(On,Off,Off,Tout)

(Off,Off,Off,TOut)

(On,Off,Off,TOut)

(Off,Off,Off,TOut)

t2

<l1.on>

whole

Fig. 3. The Part-Whole Statechart TLight2 implementing a traffic light which makes available a
different behavior from the one shown in Figure 2, given by a single go controllable transition
from red to green and two non-controllable transitions from green to yellow and from yellow
to red. The diagram has been additionally labelled for verification purposes. Rounded corners
rectangles have been removed for clarity.

a computation step. The computation step consists in first place in checking whether
incoming events (either internal or external) are present for being processed. Given an
incoming event a (possibly empty) set of state transitions TS are selected for being ex-
ecuted, where each state transition in the set has the current state of the whole section
as departing state, its guard condition is satisfied and either the incoming event matches
its transition trigger or the transition has no trigger specified. In case TS has more than
one element, a state transition is chosen arbitrarily for execution. Section 4 present a
method for designing the state machine such that, amongst other properties, |TS | ≤ 1,
that is, there is always at most one transition to be executed.

State transition execution consists in delivering the commands (if any) of the com-
mand list to the assemblage components through a communication medium; sending
the transition output event to all the PWSs which have the current PWS as component;
moving the state machine in the whole to the ending state of the transition, which be-
comes the current state of the machine. The execution and communication tasks operate
asynchronously, that is each PWS and the communication medium are driven by distinct
threads or processors. The three main entities of the operational model (whole section,
assemblage of components and communication medium) are therefore behaviorally in-
dependent and synchronize by a typical producer/consumer pattern through communi-
cation ports, that is mutex or read-write blocks of memory shared among the different
processes. Each port can be structured as a FIFO list, in order to have the producer

not to stop in case a new control signal is produced before a previously produced con-
trol message has been consumed. Some special component PWSs, for example timers,
need however to have strict timing constraints, that is to operate synchronously with
the processor/task driving the whole section. A suitable implementation technique can
therefore be employed in such a case,

2.5 Algebra of State Propositions

A state proposition P is a boolean valued function from the powerset built from the set
of assemblage global states QA of the assemblage, in symbolsP : 2QA → {true, false}.
A basic, or atomic state proposition, written Sc, is true iff the state machine c is in state
S. Logical propositional operator and, or and not (written, respectively, �, ⊕ and ¬)
may be used in order to make complex state propositions out of simpler, basic ones,
named assemblage state propositions (whose set will be referred to as EA). Given two
assemblage propositions e1, e2, e1 � e2 denotes containment and e1 ≡ e2 equiva-
lence. State propositions differ from ordinary propositional logic since the same state
machine can not be in different states at the same time, that is, for any component c and
for any state S,T ∈ Qc, the assemblage state proposition Sc � Tc is always false. We
therefore use special operator symbols in place of the standard ones. It is useful also
to have two special symbols, anyc and nonec in order to denote the state propositions
which, respectively, are always and never true of a specific component state machine c.
It can be shown that assemblage state propositions complemented by the two syntactic
sugar symbols ANYA and NONEA which denote the assemblage propositions always
true and false, form a Boolean Algebra, thus allowing to employ well known theorems
and computability results.

State Proposition Transformation Let P be a state proposition about assemblage A
and let t be a transition belonging to component c ∈ A. We define the state proposition
transformation operator transf(·, ·) such that the transformed state proposition P ′ =
transf(P, c.t) has the intended meaning “the assemblage satisfied P and transition t
happened in component c”.

For example, let P be the state proposition “traffic light tl1 is red or yellow”. In
other words, P denotes two states of the world (that is of the assemblage containing
only tl1) in which tl1 is, respectively, red and yellow. It can be observed that such a set
of states of the assemblage is transformed by tl1 moving from red to green in the set
of states in which tl1 is, respectively, green and yellow, since the former state is trans-
formed into the state of the assemblage in which tl1 is green. P ′ is then correspondingly
given by “tl1 is green or yellow”. Observe finally that state proposition P “tl1 is red or
green” is transformed in P ′ “tl1 is green” since the set of two states of the assemblage
in which tl1 is, respectively, red and green collapse into the single state in which tl1 is
green.

3 PWS State Semantics

PW Statecharts have a computable state semantics, in the sense that it is possible to
compute univocally, through the Boolean Algebra defined in Section 2.5, for each state

S belonging to the state diagram of the whole section of the PWS, a definite state propo-
sition, called indeed the state semantics sem(S) of the state. Such a state proposition
denotes the set of global states the assemblage will be able to assume at run time. We
assume that the state diagram in the whole is a finite directed graph such that any state
is reachable from the initial state q0.

Let S be any state in the whole. In case S = q0, that is the initial state of the
whole, each component c ∈ A of the assemblage will be found in one of the states
which are reachable from the initial state of component c, let them be denoted by the
set Q0(c) ⊆ Qc. Then, for each component c ∈ A it is possible to form the state
proposition init(c) =

⊕
q∈Q0(c)

qc meaning that c is in one of the states in Q0(c). The
state semantics of state q0 is then given by

sem(q0) =
⊕
c∈A

init(c) (1)

In the general case, it can be observed that it is possible to be in the generic state
S 6= q0 only by entering it through a finite number of incoming state transitions, let
it be TI(S). Let us suppose to know in which set of global states the assemblage
will be found when each t ∈ TI(S) has been completed (that is, when the control is
moved to the final state S): let such set of states be denoted by the state proposition
post(t). Since, as observed, it is possible to enter state S only through the transitions in
TI(S) = {t1, t2, . . . , tN}, when the current state of the whole section is S then, neces-
sarily, the assemblage has to be found in one of the global states denoted by post(t1)
or by post(t2) or by post(t3) and so on. In other words we have shown that

sem(S) =
⊕

t∈TI(S)

post(t) (2)

We show now how post(t) can be determined for the the generic transition ti ∈
TI(S). Let R be the departing state of t. If t has been selected for execution then two
cases have to be distinguished depending on whether the transition is externally or in-
ternally triggered.

In the case of externally triggered transitions, we have that both (a) the state transi-
tion guard and (b) the state semantics of the transition departing state R must necessarily
hold with respect to the current state of the assemblage, let it be q̇ ∈ QA. Such a state
must therefore belong to their intersection pre(·), let it be named transition precondi-
tion:

pre(t) = sem(R)� guard(t) (3)

In the case of internally triggered transitions, we have to take into account that the
current state of the assemblage q̇ ∈ QA may have been moved “outside” the semantics
of the transition departing state R before the transition takes place. Transition precon-
dition is therefore given by the intersection of (a) the state transition guard and (b) the
state semantics of R transformed by the happening of the internal event, that is:

pre(t) = transf(sem(R), c.e)� guard(t) (4)

where e is the assemblage internal event which happened within component c and
transf(·, ·) is the state proposition transformation operator described in Section 2.5.
Once the transition precondition has been determined for one of the two cases, transition
postcondition post(t) is given by chaining the transformations induced by the generic
action list 〈a1, a2, . . . , aN 〉 associated to transition t:

P1 = transf(pre(t), a1)
P2 = transf(P1, a2)

...
post(t) = transf(PN−1, aN)

(5)

4 Constraining PWS State Semantics

In this Section we analyze the relationship amongst the computation of state semantics,
as carried out in Section 3, and a notion of state correctness, that is the requirent that a
set of user-defined state propositions, called state semantics constraints, associated to
the states of the machine hosted within the whole section of the Statecharts, will hold
exactly when the state machine in the whole section moves through the correspondent
states.

4.1 State safety

Given a PWS and a state proposition labelling C(·) we say that the PWS is safely spec-
ified with respect to C(·) iff the following state invariant holds:

Definition 1 (State safety invariant). Let S be any state belonging the whole section
of a PWS. If S is the current state of the whole section, then the current state q of the
assemblage satisfies C(S), in symbols

sem(t) � C(S) (6)

In order to have the state invariant above satisfied, the system has to be specified in
a consistent manner. By the discussion above, it can be observed that the requirement
of Definition 1 may be broken either by the system section moving to state S with the
assemblage global state moving, at the same time, to a state q̇ which does not satisfy the
constraint C(S), or by an uncontrollable internal transition happening in the assemblage
when the system section is in state S, resulting in a global state q̇ of the assemblage
which does not satisfy its constraint C(S).

We say consequently that, in order to overcome the two causes above invalidating
the state safety invariant, state transitions have to be specified, according to two different
notions of correctness, discussed respectively, in Sections 4.2 and 4.3.

farm: TLight2main: TLight1
whole

t3

t4

t2

t1

R G Ygo stop

stopped

t3

t4
t1

R G Ygo stopping

stopped

t3 t2 t3

t4

main.stopped

farm.stopping

farm.stopped

Main(G,R)

W2(R,Y) Farm (R,G)

W1 (Y,R)

<main.go> <farm.go>

t3

t5

t1

(R,R)

<main.go>

<main.stop>

t2 farm
(R,R)

(G,R)

(G,R) (Y,R)

(R,R)

(R,G)

(R,Y) (R,Y)

(G,R)

(R,R)

Fig. 4. A PWS aimed at coordinating two traffic lights, which give access to a main road from a
secondary farm road by a controllable input transition (farm) followed by three internally trig-
gered ones. The diagram has been additionally labelled for verification purposes. The previously
defined PWSs TLight1 and TLight2 are now used as components by exposing only their inter-
face.

4.2 Incoming state transition safety

In order to have the state invariant of Definition 1 always satisfied for state S it then
suffices to check that, for any incoming transition to state S the state transition postcon-
dition post(t) is included within the constraint of the state, that is

post(t) � C(S) (7)

must hold for any state transition t ∈ TI(S). We have in fact that, since the contain-
ment relationship of Equation 7 holds for any t ∈ TI(S), the containment relationship⊕

t∈TI(S)

post(t) � C(S) (8)

holds as well, since we are dealing with a Boolean Algebra. Since
⊕

t∈TI(S) post(t)
can be written equivalently as sem(S) by Equation 2, we have that sem(S) � C(S), that
is the state safety invariant of Definition 1 is satisfied.

Example Specification and verification of state semantics can be carried out with re-
spect to the PWSs in the examples of the timed traffic light of Figure 3 and of the cross

road of Figure 4. In the traffic light example we first specify the desired configuration of
lamps and timing which is assigned to each state. In doing so we adopt, for clarity and
compactness, the convention of writing the tuple (X,Y) standing for the assemblage
proposition “the first component of the assemblage is in state X and the second compo-
nent is in state Y”. Such a convention can only be applied to atomic assemblage state
propositions. We have for example that C(R) is given by (On,Off,Off,TOut), where
the first three components of the tuple denote the state of the three lamps and the fourth
the state of the timer. We associate graphically invariants to states by black isosceles
triangles pointing towards the states and having the invariant written near their base.
States G and Y are specified similarly to state R, except that they have the fourth com-
ponent constrained to be, respectively, in state TIn1 and TIn2, meaning that the PWS
will have to rest in the states for at most the definite amount of time measured by the
timer: since, in both cases, there is a single outgoing transition triggered by the timeout
event which marks the end of the measured time interval, it can be observed that the
PWS will rest in the two states for exactly such time intervals. Observe that state R is
constrained instead by the timer state TOut, meaning that there is no upper time limit
to the permanence of the PWS in such a state. State transitions postconditions (depicted
inside a solid boxed rectangle joined by a dashed line connector to the end of the transi-
tion) can be easily verified to satisfy Equation 8, as well as their precondition (depicted
inside a dashed boxed rectangle joined by a dashed line connector to the begin of the
transition) can be deduced by the semantics of each state in the diagram. The semantics
of the initial state q0 is inferred by the starting state of each component and is written
as a constraint for the reasons that will become clear in the next Section. The example
of the cross road of Figure 4 can be analyzed similarly. We observe that further timing
properties can be inferred starting form the timing properties of the component traffic
lights. For example, when the cross road in state Main the main road traffic light is in
state G and the farm road in state R. Since both states are not timed, the cross road rests
in state Main for an indefinite amount of time. When in state Farm the main road traffic
light is in state R and the farm road in state G. Since the latter state belongs to PWS
TLight2 and we observed it lasts exactly a fixed amount of time, the PWS will rest in
the Farm state exactly for the same an amount time. We observe finally that arbitrary
safety properties can be checked against the design. For example, in order to check that
both traffic lights are never both in the green state at the same time, it suffices to check
that, for any S ∈ TW , (G,G) 6� C(S), which can be show to hold by examining a
limited number of state propositions, namely the number of states |TW | in the whole
sections.

4.3 Outgoing state transition safety

In order to have the state invariant of Definition 1 always satisfied for every state S
of the whole it is further necessary to check that any violation of the constraint C(S)
of the whole results in a response from the system, typically in the form of automatic
transitions which originate from the state and react to such violations. Seen the other
way, outgoing transitions are correctly specified if they “cover” any violation of the
constraint of the state from which they originate. We show that the set of possible con-
straint violation can be effectively computed at design time, in the form of exit zones.

An exit zone associated to a state S is a pair (c, t), where c is a subproposition of C(S)
and t is an automatic transition of the assemblage, such that, when the assemblage is in
a global state state q satisfying c and transition t happens, state q is transformed into q̇
which does not satisfy C(S).

The entire set of exit zones associated to a state S denote therefore all and only the
feasible violations of the state constraint, by stating which uncontrollable transitions
the assemblage may take autonomously.

Each state S of the whole must therefore provide an automatic response for each
associated exit zone (c, t) in order to avoid that control rests within the state while its
constraint does not hold anymore. This is achieved by requiring that exit zones associ-
ated to a state S are covered by one or more state transitions originating from the state,
where a set I of automatic state transitions is said to cover an exit zone (c, t) iff any
transition ti in I (1) is triggered by t and (2) the set of guards of the transitions in I
form a partition of c.

Exit zone computation In order to compute the set of exit zones associated to a state
S we start by defining the autonomous transitions associated to a generic state propo-
sition C as the set AU(C) of state transitions that can be taken autonomously by the
component machines of the assemblage when it is found in any global state that satisfies
C.

As an example consider the assemblage Cross composed by a pair of a traffic lights
TLight2. Since each component state machine has 4 states, the whole assemblage may
be found in 16 states, as depicted in Figure 5 and 7. Consider also the state proposition
traffic light 1 is in state Green and traffic light 2 is not in state q0 or traffic lights are
both in state Red or both in state Yellow written as C = (((Gtl1 � ¬q0tl2) ⊕ (Rtl1 �
Rtl2))⊕ (Ytl1 � Ytl2)).

State proposition C can be easily shown to be satisfied by any of the global states
depicted as round squares in Figure 5, which also depicts the transitions departing from
them. Thicker arrows originating from a white dot distinguish the autonomous state
transitions associated to C, that is the set AU(C).

Such a set can be computed by Algorithm 1, which determines, for any automatic
state transition in any state machine of the assemblage the respective starting state, let it
be state S for the automatic transition t in state machine c. The algorithm then forms the
state proposition “state machine c is in state S”, written Sc, and verifies whether both
Sc and C hold. In the affirmative case, transition t may happen autonomously when the
assemblage is in C and therefore t is added to the output set AU(C).

Algorithm 2 computes the set of exit zones associated to a state S by taking as input
the set AU(C) from Algorithm 1, with C = C(S). If t ∈ AU(C) is an autonomous
transition related to condition C, then it is guaranteed to happen iff the assemblage is in
a global state which satisfies both Sc and C, let it be pre = Sc � C. Moreover, when t
happens, it transforms state proposition pre in post = transf(pre, c.t), meaning that any
global state q of the assemblage which satisfies pre, after t takes place is transformed
in the global state q̇ which satisfies post. It should be evident that q̇ may still satisfy
C or not. We are interested in finding the subproposition p of pre such that, if q is
satisfied by p then q̇ is not satisfied by C. In order to do so, we perform a sort of

R

R G Y

G

Y

tl2.t2 tl2.t3

tl2.t4

tl1
.t3

tl1
.t2

tl1
.t4 G,G

q0

tl1
.t1

q0 tl2.t1

G,R G,Y

Y,Y

R,R
tl2.t4tl2.t2

tl1
.t3

tl1
.t2

tl1
.t3

tl1
.t3

tl2.t2

tl2.t4

tl2.t3 tl1
.t4

Fig. 5. The set of state transitions which can be taken from the assemblage when found in any of
the global states denoted by a rounded rectangle. Autonomous state transitionsAU(C) are drawn
as thick arrows originating from a white dot, with C being the union of the global states.

Algorithm 1: Autonomous Transitions Computation Algorithm
input : An assemblage of state machines A and an assemblage proposition C
output: The set AU of autonomous state transitions of A under state proposition C
foreach state machine c in the assemblage do

foreach automatic transition t belonging to state machine c do
take the start state of the transition, say S;
form the state proposition Sc = “state machine c is in state S”;
compute the state proposition Sc � C;
if Sc � C is not empty then

add transition t to the set AU ;
end

end
end

“trimming” of the state proposition pre, as depicted by Figure 6. In first place the pre
and post subpropositions are found as shown in (a); then proposition post is “trimmed”,
meaning that proposition C is subtracted from post, that is postTrimmed = post�¬C
is computed, as shown in (b); finally in (c) it shown that, when such a proposition is
not empty, it transformed into the proposition preTrimmed by reversing state transition
t, i.e. preTrimmed = transf(postTrimmed, c.t−1). State proposition preTrimmed can
be shown to be the “largest” subproposition of C such that, once t happens, the global
state of the assemblage does not satisfy C.

G

Y

tl1
.t3

G,GG,R G,Y

Y,Y

R,R

G,GG,R G,Y

Y,Y

R,R

G,GG,R G,Y

Y,Y

R,R

G

Y

tl1
.t3

G

Y

tl1
.t3

(a) (b) (c)

preTrimmed = transf(postTrimmed, tl1.t3−1)

preTrimmed

postTrimmed postTrimmedpost

pre

postTrimmed = post! ¬Cpost = transf(pre, tl1.t3)

Fig. 6. The trimming steps in the inner block of Algorithm 2 applied to the proposition C of
Figure 5 and to transition tl1.t3.

Algorithm 2: Exit Zones Computation Algorithm
input : The set AU of autonomous state transitions of A under state proposition C
output: The set E(C) of exit zones associated to state proposition C
foreach transition t in AU do

Let pre = Sc � C, where S is the starting state of transition t in state machine c;
Let post = transf(pre, c.t);
Let postTrim = post� ¬C;
if postTrim is not empty then

Let preTrim = transf(postTrim, c.t−1);
Add (preTrim, t) to the set E(C);

end
end

Example Figure 8 (a) and (c) depict two state propositions, which are related to the
assemblage of the two traffic lights tl1 and tl2, having three non-controllable transi-
tions each (we reported the traffic light state diagrams to each axis of the two ta-
bles). In the former case, the state proposition, C(S) = (R,G), has two exit zones,

tl1
.t3

G,GG,R G,Y

Y,Y

R,R
tl2.t4

tl1
.t2

tl1
.t3

tl2.t2 tl2.t3

tl2.t4

tl1
.t4

R

R G Y

G

Y

tl2.t2 tl2.t3

tl2.t4

tl1
.t3

tl1
.t2

q0

tl1
.t1

q0 tl2.t1

tl2.t2

Fig. 7. The exit zones associated to a state constrained by the state proposition of Figure 5.

repectively given by ((R,G), tl1.t2) and ((R,G), tl2.t3): observe that they share the
same subproposition of the state constraint. In the latter case, the state proposition,
C(S) = (G,R)⊕ (Y,R), has again two partly overlapping exit zones, this time respec-
tively given by ((G,R)⊕ (Y,R), tl2.t2) and ((Y,R), tl1.t4): observe that they share the
same subproposition of the state constraint, which are, in both cases, coincident. The
corresponding states (Figure 8 (b) and (d)) are safely specified since an adequate num-
ber of internally triggerable transitions is provided in both cases and the incoming state
transition postcondition are comprised within the respective state constraints.

4.4 State constraint completeness

In addition to the safety requirements, it is important that the postconditions of the
incoming transition to a state S fill in completely its state constraint. It becomes thus
possible to use directly the constraint in place of the state semantics, further simplifying
the calculation of transition pre- and postconditions. In symbols, if we have that, in
addition to Equation 7, for each state S ∈ TW⊕

t∈TI(S)

post(t) ≡ C(S) (9)

it trivially follows that Equations 3 and 4 may be expressed in a simplified form
given, respectively by

pre(t) = C(R)� guard(t) (10)

and by

pre(t) = transf(C(R), c.e)� guard(t) (11)

We observe similarly that, in order to have at most one transition selected on the
receipt of an external transition request, say be event e when the whole in in state S,

(c)

s

t

S

(G,R) ⊕ (Y,R)

(G,R)

tl2.t2

tl1.t4

[(G,R) ⊕ (Y,R)]

[(Y,R)]

(Y,R)

r

u

(d)(b)

s

t

S

(R,G)

r

(R,G)
tl2.t3

tl1.t1

R G Ytl2.t2 tl2.t3

tl2.t4

R

G

Y

tl1
.t3

tl1
.t2

tl1
.t4

tl1
.t4

tl2.t2

G,R

Y,R

(a)

R G Ytl2.t2 tl2.t3

tl2.t4

R

G

Y

tl1
.t3

tl1
.t2

tl1
.t4

tl2.t2

tl1
.t2

tl2.t3
R,G

Fig. 8. The representation in the cartesian state space of two state propositions (a, c) together with
the related exit zones, and of two state diagram fragments (b, d) implementing a suitable coverage
of such zones.

the preconditions of the transition having e as external trigger must (1) fully cover the
semantics of their departing state S and at the same time (2) be pairwise disjoint; in
other words they must form a partition of the constraint C(S).

5 Conclusions and further work

The paper surveys the features of the Part-Whole Statechart approach and shows in de-
tail the definitive form of its modeling constructs. On such a basis it shows also that a
state semantics can be computed directly at design time: such a semantics tells essen-
tially what happens to the assemblage of components as the PWS moves along the states
of its whole section, and vice versa. Such a semantics is however ineffective unless it is
contrasted against a well defined specification of a desired behavior. Such a specifica-
tion can be carried out by constraining a priori the state semantics by propositions on
the states of the machine. In such a way the modeller gains a robust instrument for the
unambiguous specification of the meaning of each state in the designed behaviour, for

example by telling that a cross road has the main street enabled when the traffic light is
green on such a road and red on the crossing one.

The paper presents then a notion of state correctness with respect to such a specifica-
tion: in order to keep it satisfied, state transitions must comply with the state constraints
of both their initial and arrival states; in second place, since any state constraint may
be potentially invalidated by any uncontrollable event happening in the assemblage of
components, an automatic reaction by the system must be provided: for example a sen-
sor going out of the desired value, a timer reaching a timeout condition, and so on. The
paper shows that by comparing a state proposition with the uncontrollable transitions
happening when the whole section of the Part-Whole Statechart is in such a state, it is
possible to identify constraint subproposition together with the transition which poten-
tially may invalidate them. By providing a suitable automatic triggered transition for
any of such propositions, the system is assured to move to a consistent state when one
of its constraints is invalidated. Due to the strong modularity which characterise the
approach, such a kind of exception handling mechanism may be show to be practical
both in assuring constraint satisfaction and in helping the designer in foreseeing system
reactive behaviours which may not be evident at first glance.

It should be observed, finally, that the finite and small number of states in each
whole section allows to check easily, by visiting the entire state machine graph and
comparing each state constraint with unwanted state propositions, that dangerous situa-
tions never happen. As observed in the example, the cross road may be trivially shown
to never enter a global state in which the traffic lights are both green (safety) or both red
(liveness). Further research is therefore needed in order to fully explore the topic. Other
developments may come from the application of the method to dependable systems,
especially embedded ones. It should be noted in fact that the proposed approach, which
relies on a structured communication medium, fits well with technological evolution,
which sees autonomous components connected by programmable field buses, marking
a shift of paradigm with respect to early hardware wiring practices.

References

1. Pazzi, L.: Extending statecharts for representing parts and wholes. In: Proceedings of the
EuroMicro-97 Conference, Budapest, Hungary. (1997)

2. Pazzi, L.: Part-whole statecharts for the explicit representation of compound behaviors. In:
Proceedings of the UML 2000 Conference, York (UK). Volume 1939 of LNCS., Springer
(2000) 541–555

3. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Pro-
gramming 8 (1987) 231–274

4. Cook, S., Daniels, J.: Designing Object Systems - Object-Oriented Modelling with Syntropy.
Prentice-Hall (1994)

5. Maraninchi, F.: Operational and compositional semantics of synchronous automaton compo-
sitions. In: In CONCUR. LNCS 630, Springer-Verlag (1992) 550–564

6. Jourdan, M., Maraninchi, F., Lavoisier, M.Z.R.: A modular state/transition approach for pro-
gramming reactive systems. In: In Worshop on Language, Compiler, and Tool Support for
Real-Time Systems, Mouriel.Jourdan@imag.fr (1994)

7. Pezzè, M., Taylor, R.N., Young, M.: Graph models for reachability analysis of concurrent
programs. ACM Transactions on Software Engineering Methodologies 4(2) (1995) 171–213

8. chi Cheung, S., chi Cheung, S., Kramer, J., Kramer, J.: Checking subsystem safety properties
in compositional reachability analysis. In: In Proceedings of the 18th International Conference
on Software Engineering. (1996) 144–154

