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Abstract— A wide variety of mechatronic systems are con-
trolled by operating dissipative components such as variable
resistors, variable dampers, clutches, some electro-valves and
more. Facing the limitation that the controlled devices can only
dissipate power, the issue is to find a proper control law to
satisfy the control requirements.

The mechatronic systems can usually be divided into two
or more subsystems that are connected by a power preserving
connections. This paper proposes to choose the control inputs to
lead the power towards a certain subsystems in oder to satisfy
the requirements by controlling the energy stored or the power
dissipated in that subsystem.

To this aim, the port Hamiltonian framework is used to model
the mechatronic systems. A slight extension of the definition of
port Hamiltonian system is proposed to allow the description
of a larger set of mechatronic systems and to obtain an explicit
representation of the energy flowing to a subsystem.

Some of the control laws presented in literature about
the control of semi-active suspensions are derived again by
following the proposed approach and adding a energetic inter-
pretation.

I. INTRODUCTION
Many mechatronic systems are controlled by operating

dissipative components such as variable resistors, variable
dampers, clutches, some electro-valves and more. The issue
is to find a proper control law that allows to satisfy the con-
trol requirements facing the external inputs or disturbances.
One of the main issues is the limitation that the energy can
only be dissipated by the controlled devices.

The proposed solution is based on a power-oriented model-
ing of the given mechatronic system. This modeling approach
based on power interaction is well known [1] and suitable to
mechatronic system [2]. From a mathematical perspective,
the port-controlled Hamiltonian systems (PHS) (see [3]), are
natural candidates to model many physical systems, as shown
in the application examples cited in [4]. Basically, PCH
are systems defined with respect to a geometric structure
capturing the basic interconnection and dissipation laws, and
a Hamiltonian function given by the total stored energy of
the system.

The control of PCH is an interesting research topic and
outstanding results have already been obtained. The main
results presented so far consider the possibility to operate on
the power-ports of a system in order to obtain a controlled
closed-loop system that is still a PCH with desired Hamil-
tonian function, interconnection laws and damping, see [4]

and the references therein. Another approach is the control
by interconnection of PCH described in [5]. To the best of
our knowledge the problem of controlling a PCH by means
of dissipative components has not already been addressed.

The idea proposed in this paper is to divide the mecha-
tronic system into two or more PCH subsystems that are
connected by a power preserving connection. If the control
requirements are expressed in terms of energy flows or
stored energy, the control inputs are chosen to lead the
power towards a certain subsystems or to control the stored
energy in that subsystem. To this aim, a slight extension of
the definition of PCH is proposed to allow the description
of a larger set of mechatronic systems and to obtain an
explicit representation of the energy flowing to a subsystem.
Thanks to the dissipative nature of the controlled devices
the passivity properties of the given mechatronic system are
preserved.

The semi-active vehicle suspensions (see [6]) are an
example of a mechatronic system with a controllable
dissipative device. By following the proposed approach,
some of the control laws already presented in literature
for the semi-active suspensions are derived again and a
energetic interpretation is given.

The paper is organized as follows: section II gives a brief
introduction on Hamiltonian systems. Section III extends the
definition of PCH to include a larger set of mechatronic
systems. The proposed control law for the dissipative com-
ponents are presented in section IV. The application example
to semi-active suspensions is described in section V. Finally
some conclusions are drawn.

II. A BRIEF INTRODUCTION ON
PORT HAMILTONIAN SYSTEMS

The port Hamiltonian framework is a powerful means to
model mechatronic and dynamic systems. A brief recall of
some definitions given in [3] and in [7] is given herein for
reader convenience.

For a standard mechanical system, the Hamiltonian equa-
tions of motion are 2n first-order differential equations:

q̇ =
∂H

∂p
(q, p)

ṗ = −
∂H

∂q
(q, p) + τ

(1)



where q = (q1, . . . , qn)T are generalized configuration
coordinates for the system with n degrees of freedom,
q̇ = (q̇1, . . . , q̇n)T are the generalized velocities, p =
(p1, . . . , pn)T is the vector of generalized momenta and the
Hamiltonian H(q, p) is the total energy (kinetic K(q, p) and
potential V (q)) of the system:

H(q, p) = K(q, p) + V (q) =
1

2
q̇T M(q) q̇ + V (q)

The n×n inertia (generalized mass) matrix M(q) is symmet-
ric and positive definite for all q. The generalized momenta
are then of the form:

p = M(q) q̇ (2)

System (1) is an example of a Hamiltonian system which
more generally is given in the following form:

q̇ =
∂H

∂p
(q, p)

ṗ = −
∂H

∂q
(q, p) + B(q)u

y = BT (q)
∂H

∂p
(q, p) = BT (q)q̇

(3)

where B(q) ∈ R
n×m is the input force matrix, B(q) u

denotes the generalized forces resulting from the control
inputs u ∈ R

m and y ∈ R
m are the outputs. The power

towards the system is:

dH

dt
(q(t), p(t)) = uT (t) y(t)

therefore the pair (u, y) represents a power-port between
the hamiltonian system and the external world.

A major generalization of the Hamiltonian systems de-
scribed in (3) is called port-controlled Hamiltonian system
(PCH) and it is the following:

ẋ = [J(x) − R(x)]
∂H

∂x
(x) + g(x)u,

y = gT (x)
∂H

∂x
(x)

J(x) = −JT (x)

R(x) = RT (x) ≥ 0

(4)

One of the key feature of the PCH is the energy perspective
in modeling the physical systems. The Hamiltonian H(x)
represent the energy stored in the system, the product yT u

has the units of power and has the physical meaning of the
power through the port (u, y), indeed the power balance in
(4) is:

yT u =
dH

dt
+

∂H

∂x

T

R
∂H

∂x
≥

dH

dt

namely the power yT u supplied to the system is partially
stored as energy and partially dissipated through R. Several
examples of modeling mechatronic systems by Hamiltonian
system can be found in the literature, some of them can be
found in the references in [4].

III. AN EXTENSION OF THE
PORT HAMILTONIAN DEFINITION

Many mechatronic systems are obtained connecting dif-
ferent subsystems by power preserving interconnections. Let
(u1, y1) and (u2, y2) be the power ports of two PCH, the
general power preserving interconnection is the following:

[

u1

u2

]

=

[

0 A

−AT 0

] [

y1

y2

]

(5)

the matrix A can also be time varying and/or state dependent.
With the interconnection (5) the power goes from one system
to the other without losses:

yT
1

u1 = yT
1

A y2 = yT
2

AT y1 = −yT
2

u2

namely the outcoming energy from one subsystem is exactly
the incoming energy to the other.

The PCH in (4) does not consider the possibility of
external inputs that directly modify either the dissipation
matrix R(x) or the matrix J(x). This problem was partly
addressed in [8] where a matrix J depending on external
inputs is considered. As previously described, many mecha-
tronic systems have dissipative components whose behaviour
depends on an external input. To take into account these
phenomena, the following modification of (4) is proposed:

ẋ = [J(x, v) − R(x, v)]
∂H

∂x
(x) + g(x) u

y = gT (x)
∂H

∂x
(x)

J(x, v) = −JT (x, v)

R(x, v) = RT (x, v) ≥ 0

(6)

To represent mechatronic systems as a set of PCH con-
nected by power preserving interconnections, the definition
(6) is still not enough, as shown in the example of Sec. V.
Some components of mechatronic systems may show a direct
dissipation between the input u and the output y. A resistor
is simplest example. The PCH in (4) cannot consider such
behaviour since the dissipation matrix R(x) may vary only
due to the state dynamics. To describe mechatronic compo-
nents that show direct dissipations, this further modification
of (6) is proposed:

ẋ = [J1(x, v) − R1(x, v)]
∂H

∂x
(x) + g(x, v) u

y = gT (x, v)
∂H

∂x
(x) − [J2(x, v) − R2(x, v)] u

Ji(x, v) = −JT
i (x, v) i = 1, 2

Ri(x, v) = RT
i (x, v) ≥ 0 i = 1, 2

(7)

where v is an external input vector that may also be
equal to u. The matrix J2(x, v) models a direct change
of interconnection (example: ideal switches). The matrix
[J2(x, v) − R2(x, v)] has a similar meaning as the matrix
D of the linear systems (ẋ = A x + B u, y = C x + D u).



The extended definition (7) preserves the basic properties
of the PCHs and the energy perspective in modeling the phys-
ical systems. The inner product yT u has still the physical
meaning of the power through the port (u, y) and the power
balance in (7) is the following:

dH

dt
= yT u −

∂H

∂x

T

R1(x, v)
∂H

∂x
− uT R2(x, v) u (8)

From (8) it is straightforward to verify that (7) satisfies the
energy balance equation (EBE):

H(x(t)) − H(x(0)) =

∫ t

0

yT (τ)u(τ)dτ − d(t) (9)

where d(t) is a nonnegative function that captures the
dissipation effects.

IV. CONTROL BY DISSIPATIVE COMPONENTS

Many mechatronic systems are controlled by dissipative
components and the inputs u in (7) are not controlled
variables, conversely the inputs u often represent
disturbances. The semi-active suspension described in
the next section is a such example: the input u is the
road profile velocity ẋr. Further examples are the clutches
(the torques on the axles are not controlled inputs, only
the friction torque is controlled) and some electro-valves
(the main external inputs are usually the hydraulic supply
pressure and the reservoir pressure). If it is not possible
to modify the energy flows by the power port (u, y), the
approach [4] cannot be used. The control requirements
can be satisfied by operating the dissipative components
only. In the sequel, the external inputs u are considered as
non-controllable variables or, similarly, disturbances.

This control problem, to the best of our knowledge, has
never been addressed for PCH and a full result is not yet
available. This paper proposes to control the dissipative
components by taking into account the energy flows between
subsystems. The next section shows how some well known
control laws can be obtained by using this approach.

The proposed approach is based on two steps:
1) translate the control requirements in required energy

levels for a subsystem or in required power towards
a subsystem.

2) operate the dissipative components to obtain the re-
quired energy levels or power.

To help the solution of the first step, the mechatronic
system is divided into two or more subsystems of the type (6)
or (7) that are connected by a power preserving connection
of the type (5). By this way the power toward and the
energy stored in each subsystem can be easily computed. The
correspondence between control requirements and energy
levels or power is the target of future research and it is not
addressed in this paper.

Concerning the second step, the control inputs v are
chosen to control the power towards a certain subsystems

in oder to control the energy stored or the power dissipated
in that subsystem. Four control laws for the input v are
proposed. The control, to a desired value Wd, of the power to
a subsystem is the target of the control laws C1 and C2. The
control laws C3 and C4 are based on a desired energy level
Hd for the subsystem. To simplify the notation, let D(v, x)
denote the dissipated power:

D(v, x) =
∂H

∂x

T

R1(x, v)
∂H

∂x
+uT R2(x, v) u ≥ 0

Ḣ = yT u − D(v, x)
(10)

C1) Let Wd be the desired value of the power toward a
subsystem of the type (6) or (7). From the power balance
(10) the desired power Wd or its closest possible values are
obtained by the following control law:

v :















max(Ḣ+D(v, x)) if max(Ḣ+D(v, x))<Wd

min(Ḣ+D(v, x)) if min(Ḣ+D(v, x))>Wd

Wd = Ḣ + D(v, x) othervise
(11)

The first (or the second) condition means that the desired
power Wd cannot be obtained and then one of the values of
v that gives the smallest difference is chosen. The desired
value Wd is only obtained in the third case. Unfortunately
to solve (11) (especially for the third case) the exact
knowledge of the system (x, H(x), R1(x, v) and R2(x, v)
must be exactly known) and of the power through the port
(u, y) are required.

C2) When it is required to minimize or maximize the power
Wd the control law (11) can be simplified and the resulting
new control law may be much easier to be implemented.
The minimization (maximization) of Wd can be obtained by
substituting in (11) Wd = −∞ (Wd = ∞). If Wd = ±∞

only some conditions of (11) are possible and the control
low simplifies as follows:

v :

{

max(Ḣ+D(v, x)) if Wd = +∞

min(Ḣ+D(v, x)) if Wd = −∞
(12)

As shown in the next section, this control law may be much
simpler to be implemented since only the maximization (or
minimization) of Ḣ(x)+D(v, x) with respect to v is required.

C3) Let Hd be the desired level of energy for the considered
subsystem. Let f(z) be a real function of the real variable z

such that f(z) z > 0 if z 6= 0. The desired energy level Hd

can be obtained by the following control law:

Ḣd = −f(H(x) − Hd) (13)

where Ḣd is the desired value for the time-derivative Ḣ(x).
From (8) the time derivative Ḣd can be obtained choosing
the control v as follows:



v :















max(yT u−D(v, x)) if max(yT u−D(v, x))<Ḣd

min(yT u−D(v, x)) if min(yT u−D(v, x))>Ḣd

Ḣd = yT u − D(v, x) othervise
(14)

The first (or the second) condition means that the desired
Ḣd cannot be obtained and then one of the values of v

that gives the smallest difference is chosen. The desired
value Ḣd is only obtained in the third case. Unfortunately
to solve (13) the exact knowledge of the system (x, H(x),
R1(x, v) and R2(x, v) must be exactly known) and of the
power through the port (u, y) are required.

C4) A control law that requires less knowledge of the system
than C3 is obtained starting from (13) and (14) and choosing
the maximum or the minimum possible values for Ḣd. The
resulting control law is the following:

v :

{

max(yT u−D(v, x)) if H(x) < Hd

min(yT u−D(v, x)) if H(x) ≥ Hd

(15)

As shown in the next section, this control law may be much
simpler to be implemented since only the maximization (or
minimization) of yT u−D(v, x) with respect to v is required.

Remark 1. As shown in equations (11) and (14) it is not
ensured that the control requirements can always be satisfied
by operating on the control input v. This is mainly due to
the inputs u that are not controlled variables and that may
assume any value while the term D(v, x) may be limited.

Remark 2. In the more general case the input v is a
vector, therefore equations (11), (12) (14) and (15) may
have more solutions that have different components of v.
If a particular structure for the matrices R1 and R2 is not
given, it is not be possible to define a criterium for the
choice of the best solution.

Remark 3. The considered mechatronic systems are
described by PCHs of the type (6) or (7) interconnected
by (5) therefore the energy balance equation (9) is always
satisfied and the subsystems are all passive for any value of
the input v. Therefore, thanks to the dissipative nature of
the controlled devices the passivity properties of the given
mechatronic system are preserved for any choice of the
control law.

V. CONTROL OF SEMI-ACTIVE SUSPENSIONS

The semi-active suspensions are a typical example of a
mechatronic system controlled by a dissipative component.
A semi active suspension system is shown in Fig. 1 regarding
a quarter-car model. The damping b of the shock absorber is
controlled by an electro-valve. The typical control problem
is to choose the value of the desired damping bd in order to
maximize the comfort for the passengers. The ideal solution
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Fig. 1. Graphical representation of the quarter-car model with semi-active
suspension with variable damper b.

were to obtain a body (sprung mass) speed and acceleration
as close as possible to zero to minimize the movements and
the forces perceived by the passengers. A detailed description
of the semi-active suspensions can be found in [6] and in
references therein. This section shows how some control laws
already known for the semi-active suspensions can be derived
again by means of the proposed approach. Other examples
are also available (clutches, electro-valves,...), however the
semi-active suspensions example is one of the most complete
and intuitive.

The variables shown in Fig. 1 have the following mean-
ings: Ms denote the quarter-car body mass, Mt is the total
unsprung mass (tire, wheel, brakes, suspension links,...), b

and bd are the real and the desired damping coefficients of the
shock-absorber, K and Kt are the stiffness of the suspension
spring and of the tire, respectively. Finally xs, xt and xr are
the vertical position of the body mass, of the tire and of
the road profile, respectively. The PCH model of the system
shown in Fig. 1 is the following:

H =
1

2
Ms ẋ2

s +
1

2
Mt ẋ2

t +
1

2
K x2

st +
1

2
Kt x2

tr















ẍs

ẍt

ẋst

ẋtr















=















−b
M2

s

b
MsMt

−1

Ms

0

b
MsMt

−b
M2

t

1

Mt

−1

Mt

1

Ms

−1

Mt

0 0

0 1

Mt

0 0





























Ms ẋs

Mt ẋt

K xst

Ktxtr















+















0

0

0

−1















ẋr

y =
[

0 0 0 −1
] [

Msẋs Mtẋt K xst Ktxtr

]T

(16)
The gravitational force has been compensated by the springs
pre-load and it does not compare in the equations. The state
variables xst = xs − xt and xtr = xt − xr represent,
respectively, the deformations of the spring and of the tire
with respect to the equilibrium length.



The variable dissipation b depends on the actuator dynam-
ics. The simplest actuator is usually described by a first order
linear dynamics with saturation of b between bmin > 0 and
bmax > bmin. Let bd be the desired damping, let β > 0
be the bandwidth of the actuator, the simplified actuator
dynamics is the following:

ḃ =















0 if b ≥ bmax and bd ≥ bmax

0 if b = bmin and bd ≤ bmin

β (bd − b) else

Remark 4. For the sake of clarity the described
suspension system is linear as in [6]. For a real suspension
system both K and b are nonlinear functions of some state
variables. However the results presented in the following
section hold also in the nonlinear case and for any (regular)
actuator dynamic behaviour.

A. Partition of the PCH

The semi active suspension system can be partitioned in
the following three connected PCHs (see also the dashed
boxes of Fig. 1):

1) Subsystem 1, sprung mass PCH:

H1 =
1

2
Ms ẋ2

s

ẍs =
[

0
]

Ms ẋs +

[

1

Ms

]

u1

y1 =

[

1

Ms

]

∂H1

∂ẋs

= ẋs

(17)

2) Subsystem 2, spring-damper PCH:

H2 =
1

2
K x2

st

ẋst =
[

0
]

Kxst +
[

1 −1
]

[

u2,1

u2,2

]

[

y2,1

y2,2

]

=

[

1
−1

]

K xst +

[

b −b

−b b

][

u2,1

u2,2

]

(18)

3) Subsystem 3, wheel and tire PCH:

H3 =
1

2
Mt ẋ2

t +
1

2
Kt x2

tr





ẍt

ẋtr



 =







0 −
1

Mt
1

Mt

0











Mt ẋt

Kt xtr



 +







1

Mt

0

0 −1











u3,1

ẋr









y3,1

y3,2



 =







1

Mt

0

0 −1











Mt ẋt

Kt xtr



 =





ẋt

−Kt xtr





(19)

The three subsystems are connected in the following
power-preserving way:

[

u2,1

u1

]

=

[

0 1
−1 0

] [

y2,1

y1

]

→

[

u2,1

u1

]

=

[

ẋs

−Kxst−bẋst

]

[

u2,2

u3,1

]

=

[

0 1
−1 0

] [

y2,2

y3,1

]

→

[

u2,2

u3,1

]

=

[

ẋt

Kxst+bẋst

]

(20)
In the sequel two of the control law proposed for the

semi-active suspensions are derived again by following the
proposed approach. Although the passive suspensions are not
controllable, their behavior from a power/energy perspective
is analyzed to get some insight about the proposed approach.

B. Passive suspensions

Let consider the spring-damper subsystem 2, the stored
energy is:

H2 =
1

2
K x2

st ≥ 0

and the power yT
2

u2 = Ḣ2 + D2(x, v) results:

yT
2

u2 = Ḣ2 + D2(v, x)

= K xst ẋst +
[

u2,1 u2,2

]

[

b −b

−b b

][

u2,1

u2,2

]

= K xst ẋst + b ẋ2

st

(21)
If the requirement were to dissipate as much power as
possible from the external world, the control law C2 with
W2d = +∞ should be applied. From (12) and (21):

b : max(K xst ẋst + b ẋ2

st) → bd = const = bmax

therefore the damping should be constant at its maximum
value and a passive suspension is enough to meet the
requirement. However it is well known that this solution is
not optimal both for performance and for comfort.

C. Classic two-state sky-hook control strategy

The target of the sky-hook control is to keep the body
vertical speed ẋs and acceleration ẍs as close as possible
to zero facing the road profile ẋr . The classic two-state
“sky-hook” control law given in the literature, see [6], is
the following:

bd =

{

bmax if ẋst ẋs ≥ 0

bmin else
(22)

This control law can be obtained in an alternative way
by means of the method presented previously following
energetic considerations. Consider the subsystem 1 described
by (17), the kinetic energy of the body is H1(ẋs) and it is
always positive. Let the desired energy level H1d be set to
zero, this means zero vertical speed of the body. By applying
the control law C4, only the second condition of (15) is
possible. Since for the subsystem 1 D1(x, v) = 0, the power
yT u − D(x, v) results:

yT
1

u1−D1(x, v)= ẋs (−b ẋst−Kxst) =−b ẋsẋst−Kxst ẋs



To minimize yT
1

u1−D1(x, v) as requested in (12) it is only
possible to minimize −b ẋsẋst, this is obtained exactly by
requiring the damping bd as in the control law (22).

This example shows that the control law C4 may be simple
to be implemented since only a partial knowledge of the
system state is required.

D. Acceleration based two-state sky-hook control strategy

This strategy is proposed in [6] and it is based on the body
vertical acceleration:

bd =

{

bmax if ẍs ẋst ≥ 0

bmin else
(23)

This control law can be obtained in an alternative way by
means of the control law C2 previously presented. Consider
the subsystem 2 described by (18). Let the desired power
W2d be the following:

W2d =







+∞ if yT
2

u2 ≤ 0

−∞ if yT
2

u2 > 0
(24)

The incoming power is yT
2

u2 and Wd = yT
2d u2d conse-

quently the requirements are to keep the incoming power
as close as possible to zero: if yT

2
u2 > 0 (yT

2
u2 < 0) the

requested power W2d is the lowest (highest) possible. This
control law mimics a sort of sliding mode control of the
power. Using (8), the power balance equation is:

yT
2

u2 = Ḣ2 + D2(v, x) = K xst ẋst + b ẋ2

st (25)

According to (12), (24) and (25), the damping b must be
chosen to maximize (or minimize) K xst ẋst+b ẋ2

st, therefore
the desired damping bd is set as follows:

bd =

{

bmax if yT
2

u2 ≤ 0

bmin else
(26)

This control law is exactly the same as (23) since:

yT
2

u2 = (K xst + b ẋst) ẋst = −Ms ẍs ẋst

This example shows that the control law C2 may be
simple to be implemented since only a partial knowledge of
the system state is required.

Remark 5. The control law (23) may show an oscillating
behavior on bd if the bandwidth β is wide enough and when
bmax ẋ2

st + K xst ẋst > 0 and bmin ẋ2

st + K xst ẋst < 0.
This is due to the direct dependence of ẍs (or y2) on the
damping b, namely if β → ∞ the controlled variable would
affect instantaneously the measured variable.

The choice of the requirement (26) is then a limit case for
the control law C2.

VI. CONCLUSIONS
The paper has addressed the problem of controlling

mechatronic systems, described by interconnected port
Hamiltonian systems, by operating dissipative components.
To this aim a slight extension of the definition of port Hamil-
tonian system has been proposed to allow the description of
a larger set of mechatronic systems.

The proposed idea is to divide the mechatronic system
into two or more subsystems that are connected by a power
preserving connection. The control inputs are then chosen to
control the stored energy or the power dissipated of a certain
subsystems.

The semi-active suspension has been considered as a basic
example of application of the proposed approach.

The paper presents only some preliminary results, many
problems and questions remain open, among them translating
the control requirements into a desired energy or power and
choosing the best control law are open issues for further
research.
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