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Abstract— This paper proposes a dynamic model of an
electro-hydraulic three point hitch for farm tractors. The mod-
eling technique is based on the Hamiltonian system framework
and on power-port interaction between subsystems. The model
allows fast and precise simulations and therefore can be used
for the development and the validation of control strategies
by simulations and hardware in the loop experiments. The
proposed model has been validated comparing the simulation
results with experimental measurements.

I. INTRODUCTION

A three point hitch for farm tractors is a fundamental
device for the agricultural works. It’s typical framework is
shown in Fig. 1, it is composed by a set of levers that connect
the agricultural implement (or tool) to the tractor chassis.
The levers are operated by a lift cylinder controlled by two
electro-valves as shown in Fig. 2.

Two kind of control targets are usually considered: posi-
tion control and draft control. The position controller must
keep the position of the implement to a desired value facing
the disturbances on the load. The draft controller aims to
keep constant the draft on the hitch levers, it requires a draft
sensor but it easily prevents the farm tractor from stalling
in case of a strong draft increase. Combined position/draft
controllers are usually implemented.

As described in [1] the performance of an hitch controller
is usually evaluated by hours of experimental measurements
and field tests. This procedure becomes very expensive when
it is carried out for the development of a new controller:
trial and error experiments requires hours of tests and the
parameters tuning is often based more on expertize than on
numerical evaluations.

The aim of this work is the identification of a dynamic
model of an electro-hydraulic three point hitch for the
validation of control strategies by simulations and hardware
in the loop (HIL) experiments.

The presence of three energetic domains (electrical, hy-
draulic and mechanical) and the kinematics of the levers
make this modeling problem challenging. The modeling
approach followed in the paper is based on power interaction
between subsystems as described in [2] and [3]. One of the
key modeling issues is due to the hitch kinematics. This
issue is faced by modeling the hitch as an Hamiltonian

system, please refer to [4] and [5] for deeper details. The
proposed hitch submodel takes into account also the friction
phenomena due to static and Coulomb friction.

Faster simulations are essential to allow HIL experiments.
The static and Coulomb friction are properly simulated
to avoid switching phenomena that increases abruptly
the computational effort and the simulation time. To get
faster simulations, the complex mathematical description
of the hitch dynamics is properly simplified maintaining
the physical coherence of the model (i.e. no false energy
generation/dissipation processes).
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Fig. 1. Three point hitch for a farm tractor.

The paper is organized as follows: Section II gives a brief
introduction on Hamiltonian systems that are the base of
the model presented in Section III. This Section present
also the algorithm for the fast simulation of the static and
Coulomb friction and the model simplification. Despite this
simplification the proposed model is able to reproduce the
main dynamic behavior of the system as shown in Section
IV. Finally some conclusions are drawn.

II. A BRIEF INTRODUCTION ON
HAMILTONIAN SYSTEMS

The hamiltonian framework is a powerful means to model
dynamic systems. A brief recall of the definitions given in
[4] and in [5] is given herein for reader convenience.

The standard Euler-Lagrange equations are given as:

d

dt

(

∂L

∂q̇
(q, q̇)

)

−
∂L

∂q
(q, q̇) = τ (1)

where q = (q1, . . . , qn)T are generalized configuration
coordinates for the system with n degrees of freedom,



q̇ = (q̇1, . . . , q̇n)T are the generalized velocities, τ =
(τ1, . . . , τn)T is the vector of the generalized forces acting
on the system, the Lagrangian L(q, q̇) equals the difference
between the kinetic energy K(q, q̇) and the potential energy
V (q):

L(q, q̇) = K(q, q̇) − V (q)

The partial derivatives ∂L
∂q̇

and ∂L
∂q

are column vector. The
Lagrangian function L(q, q̇) in standard mechanical systems
is of the form:

L(q, q̇) =
1

2
q̇T M(q) q̇ − V (q) (2)

where the n × n inertia (generalized mass) matrix M(q) is
symmetric and positive definite for all q.

The vector of generalized momenta p = (p1, . . . , pn)T is
defined for any Lagrangian as:

p =
∂L(q, q̇)

∂q̇

For a standard mechanical systems with Lagrangian (2) the
generalized momenta are of the form:

p = M(q) q̇ (3)

By defining the state vector (q1, . . . , qn, p1, . . . , pn)T the
n second-order equations (1) transforms into a 2n first-order
equations called Hamiltonian equations of motion:

q̇ =
∂H

∂p
(q, p)

ṗ = −
∂H

∂q
(q, p) + τ

(4)

where the Hamiltonian H(q, p) is the total energy of the
system:

H(q, p) = K(q, p) + V (q)

System (4) is an example of a Hamiltonian system which
more generally is given in the following form:

q̇ =
∂H

∂p
(q, p)

ṗ = −
∂H

∂q
(q, p) + B(q)u

y = BT (q)
∂H

∂p
(q, p) = BT (q)q̇

(5)

where B(q) ∈ R
n×m is the input force matrix, B(q) u

denotes the generalized forces resulting from the control
inputs u ∈ R

m and y ∈ R
m are the outputs. The power

flowing into the system is:

dH

dt
(q(t), p(t)) = uT (t) y(t)

therefore the pair (u, y) represents a power-port between
the hamiltonian system and the external world.
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Fig. 2. Schematic of the standard electro-hydraulic components of a three
point hitch.

III. THREE POINT HITCH MODEL

This Section presents the two main submodel of the pro-
posed model: the hydraulic actuators model (in Subsection
A) and the hitch levering dynamic model (in Subsection
B). Subsection C introduces the simulation procedure that
deals with the friction phenomena. Finally, subsection D
describes a model simplification that allows both to speed
up the simulations and to maintain the physical coherence
of the model.

A. Hydraulic Actuator dynamic model

The hydraulic actuator is composed by a hydraulic pump,
a lift cylinder and two electro-valves as shown in Fig. 2.

The pump is operated by the engine and provides a oil
flow QM proportional to the engine revolution speed ωM :
QM = KM ωM .

The built valve is a flow control valve and the oil flow QR

toward the lift cylinder is modeled as:

QR = min{QM , fR(uR)}

u̇R =
1

τR

(iR − uR)
(6)

where iR is the control current, uR is a state variable for the
valve dynamics and fR(uR) is a nonlinear map from the state
variable uR and the output oil flow. The time constant τR

models the main dynamic behaviour of the valve. Equations
(6) give a “logic” description of the valve behaviour, this kind
of modeling is suitable for the hitch model since the internal
valve phenomena are much faster than the other dynamics
in the system and the valve flow results almost independent
from the pressure P within the lift cylinder.

The damp valve is a controlled discharge orifice, the
discharge flow QF is:

QF = CF (uF )
√

|P − PR| sign(P − PR)

u̇F =
1

τF

(iF − uF )
(7)

the first equation is the well known relation that gives the
oil flow through an orifice as a function of the pressure drop



across the orifice P − PR. The oil density is considered to
be constant. uF is a state variable for the valve dynamics
and CF (uF ) is the function that describes the effective area
of the orifice as a function of the internal state variable uF .
iF is the valve control current.

Let z be the linear displacement of the lift cylinder and
let α denote the angular position of the lift arm as shown in
Fig. 1. The nonlinear relation between z and α is:

z = fZ(α) ⇒ ż =
d fZ(α)

d α
α̇ (8)

The derivative of fZ(α) allows to describe the power-port
connection between the cylinder and the hitch levers:

τp = Az

d fZ(α)

d α
P

Qz = Az ż = Az

d fZ(α)

d α
α̇

(9)

where τp is the torque on the lift arm due to the pressure
P , Az is the lift cylinder active area and Qz is the oil flow
through the lift cylinder due to the lift arm rotation.

The pressure dynamics is finally modeled by an hydraulic
capacitance Cz :

Cz Ṗ = QR − QF − Qz (10)

B. Hitch levering dynamic model

The dynamic model of the hitch levering is obtained by
following the port-hamiltonian framework. Let (x, y) denote
the position of the center of gravity G of the implement with
respect to an inertial frame, let θ be the angular position
of the implement as shown in Fig. 1. The mass and the
inertia (respect to the rotation θ around G) of the implement
are denoted with L and J respectively. The mass of the
levering arms can be neglected with respect to the mass of
the implement.
The levering system has only one degree of freedom, there-
fore it is possible to compute the position (x, y, θ) of G as
a function of the angular position α of the lift arm:

x = fx(α) y = fy(α) θ = fθ(α) (11)

The Hamiltonian H of the hitch levering is the kinetic energy
of the implement (the potential energy due to the gravity is
considered later):

H =
1

2
L ẋ2 +

1

2
L ẏ2 +

1

2
J θ̇2

computing the time derivatives using (11):

H =
1

2
M(α) α̇2 (12)

where

M(α) = L

(

d fx(α)

d α

)2

+L

(

d fy(α)

d α

)2

+J

(

d fθ(α)

d α

)2

(13)
From (3), the momenta pα is then given by:

pα = M(α) α̇ (14)

and the corresponding Hamiltonian is finally:

H(α, pα) =
1

2

p2

α

M(α)
(15)

From a power-port viewpoint, the hitch levering has two
power-ports: the first, toward the lift arm, is described by the
pair (τα, α̇), the second describes the interaction between the
center of gravity of the implement and the environment and
it is given by ([Fx, Fy , τθ]

T , [ẋ, ẏ, θ̇]T ). This second power-
port takes into account also the gravity.

Given the Hamiltonian (15) and the two power-ports
described above, the equations of motion of the hitch levering
result:

α̇ =
∂H

∂pα

(α, pα) =
pα

M(α)

ṗα = −
∂H

∂α
(α, pα)+τα+

d fx

d α
Fx+

d fy

d α
Fy+

d fθ

d α
τθ

ẋ =
d fx

d α
α̇ ẏ =

d fy

d α
α̇ θ̇ =

d fθ

d α
α̇

(16)

C. Friction modeling and simulation

Static and Coulomb friction play an important role in the
system. They are due to both the rings within the lift cylinder
(that avoids any oil leakage even at high pressures) and the
bearing shells between the levers. To include these dissipative
phenomena in the model, an approach similar to the one
presented in [8] and in [9] is followed.

First note that the Coulomb friction due to the cylinder
rings and the one due to the bearing shells act in parallel,
therefore their amplitude can be added and a unique Coulomb
friction torque can be considered. The Coulomb friction
torque τbc depends on the sign of the speed according to
the following relation (see [6]):

τbc = Kbc sign(α̇)

where Kbc ≥ 0 denotes the Coulomb friction amplitude. The
viscous friction is described by:

τbv = Kbv(α̇) Kbv(0) = 0 Kbv(α̇) α̇ ≥ 0

where Kbv(α̇) is a nonlinear continuous function. Since
the levers speed is relatively small, the viscous friction can
be usually neglected, indeed its amplitude is very small if
compared to the Coulomb friction one.

Since the function M(α) is strictly positive, according to
(14), the sign of α̇ is the same as the sign of pα. The torque
τα in (16) is then the difference between the torques τp and
the friction torques:

τα = τp − τbc − τbv = τp − Kbc sign(pα) − Kbv(α̇)

Let τs be:

τs = −
∂H

∂α
(α, pα)+τp−Kbv(α̇)+

d fx

d α
Fx+

d fy

d α
Fy+

d fθ

d α
τθ

the time derivative of the momenta pα in (16) becomes:

ṗα = τs − Kbc sign(pα) (17)



The equation (17) is not suitable to be simulated. Indeed
when the variable pα is zero and when |τs| ≤ Kbc, the
function Kbc sign(pα) causes a sliding mode condition (see
[10]), the term Kbc sign(pα) starts switching at infinite fre-
quency between the two values ±Kbc and ṗα is kept to zero.
This condition cannot be precisely simulated by computers.
The simulation algorithm presented in [8] faces this problem
and allows to achieve fast and precise simulations. The key
idea of this algorithm is to substitute the term Kbc sign(pα)
with its equivalent control (see [10]) when |τs| ≤ γ Kbc and
pα = 0. The coefficient γ ≥ 1 is the ratio between the static
and the Coulomb friction amplitudes. By this way, computing
the time derivative of the momenta pα as:

ṗα =















τs−Kbc sign(pα) if pα 6= 0

0 if pα = 0 and |τs| ≤ γ Kbc

τs−γ Kbc sign(τs) if pα = 0 and |τs| > γ Kbc

it is possible to simulate both the static and the Coulomb
friction avoiding the sliding mode condition. Moreover the
amplitudes of the static and coulomb friction can also be
time variable or speed dependent (as for the Stribeck Effect,
see [6]).

D. Model simplification for simulation

The dynamic model (16) is mathematically and energeti-
cally exact. However the functions (11) are rather complex
since inverse trigonometric functions are involved, conse-
quently their partial derivatives are huge and their computa-
tion slows down the simulations. To reduce the computational
effort, it is possible to obtain a simplified model that main-
tains the hamiltonian framework. This guarantees that the
approximated model keeps its physical meaning and it does
not hide any false energy generation/dissipation process.

The basic idea is to interpolate the derivative of the
functions (11) by polynomials. Then, from (13), the function
M(α) becomes a polynomial and all the functions that ap-
pears in (16) are polynomials. The order of the polynomials
can be chosen to obtain the best fitting with the analytical
function. Figure 3 shows the derivative of the functions
(11) and their approximation by 4th order polynomials: the
approximations almost overlap the analytical functions.

IV. EXPERIMENTAL SETUP AND
SIMULATION RESULTS

The experimental setup consists in a three point hitch
connected to a farm tractor. To avoid oscillations of the
tractor due to the tires and the hitch movement, the tractor
chassis was fixed to the ground. A standard implement
was attached to the hitch. Experiments with different load
weights and positions were measured. The following signals
were measured: the two control currents iR and iF , the lift
cylinder pressure P and the arm angular position α. The
experiments were made by giving step input currents of
different amplitudes to rise and fall the implement at different
speeds.
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th order polynomials (solid).

Figures 4-11, compare the experimental measurements
with the corresponding simulations of the proposed model.
The comparisons are referred to both upward and downward
movements, the results shown in Figs. 4-7 refer to a exper-
iment with heavy load, the results in Figs. 8-11 correspond
to a “light” load. For a non-disclosure agreement the axis
are normalized, however to allow a correct comparison the
constants T0 and Pmax are the same for all the plots.

Excluding the mass and the position of the implement,
the coulomb friction amplitude Kbc is the only system’s
parameter that does change when the load is varied, the
hydraulic parameters are the same in all the simulations. The
amplitude Kbc is smaller when the load is lighter, this is due
to the reduction of the friction forces on the bearing shells
when the load is lighter.

All the comparisons show a good matching between the
experimental and the simulated data. The lift arm position α
is well replicated in all the comparisons, the pressure waves
in the cylinder are quite similar to the experimental data.

V. CONCLUSIONS

A dynamic model of an electro-hydraulic three point hitch
for farm tractors has been proposed. The model allows
fast and precise simulations and therefore can be used for
the development and the validation of control strategies
by simulations and hardware in the loop experiments. The
proposed model has been validated comparing the simula-
tion results with experimental measurements. The modeling
technique based on Hamiltonian systems and power-ports has
demonstrated to be a powerful tool for modeling the dynamic
systems.
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Fig. 4. Cylinder pressure P measured (bottom) and simulated (top) for an
hitch lift with heavy load.
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Fig. 5. Lift arm angular position α measured (dashed) and simulated (solid)
for an hitch lift with heavy load.
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Fig. 8. Cylinder pressure P measured (bottom) and simulated (top) for an
hitch lift with light load.
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Fig. 9. Lift arm angular position α measured (dashed) and simulated (solid)
for an hitch lift with light load.
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Fig. 10. Cylinder pressure P measured (bottom) and simulated (top) for
an hitch fall with light load.
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Fig. 11. Lift arm angular position α measured (dashed) and simulated
(solid) for an hitch fall with light load.


