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Abstract— In the paper a three-dimensional dynamic model
of the tire-soil interaction is presented. The Power-Oriented
Graphs (POG) technique is used for modelling the system.
An important feature of the proposed model is the use of an
elastic element for describing the interaction of the tire with
the ground. The proposed model solve some particular limits
of the Pacejka formulas. For example it can be used also when
the car or wheel velocities are zero or when the vehicle is at
rest on an inclined surface. Moreover, the skidding and the
slipping phenomena that in the Pecejka’s formulas are mixed,
in the proposed model are kept separate so allowing a more
direct correspondence of the model with the physical meaning
of the described phenomena. The effectiveness of the proposed
model has been tested in simulation on a four wheel car.

I. INTRODUCTION

Friction force at the tire-soil interface is the main mech-
anism to convert motor torque to longitudinal force. The
traditional approach to this interaction involves Pacejka’s
formulas [1]. These formulas are based on empirical data
fitting and have some limits to their applicability. In fact
they are static functions which involve a great number
of parameters that have to be set in function of different
conditions such as road surface, tire pressure, vehicle load
etc. Moreover they always require the presence of a slip
to generate forces, but in this way it is not possible, for
example, to simulate a vehicle at rest on an inclined surface.
In this paper the Power-Oriented Graphs technique is used
for modelling the elastic interaction of the tire with the
soil. The three-dimensional dynamic model obtained using
this energetic approach seems to be a good substitute of
the Pacejka’s formulas without the drawbacks previously
mentioned. The paper is organized in the following way.
Section II states the basic properties of the POG modelling
technique. Section III shows the main features and draw-
backs of the Pacejka’s formulas. The POG dynamic model
of the tire-soil interaction is presented in Section IV and
some simulation results are given in Section V. Finally,
some conclusions are reported in Section VI.

II. THE BASES OF POWER-ORIENTED GRAPHS

The “Power-Oriented Graphs” are “signal flow graphs”
combined with a particular “modular” structure essentially

based on the two blocks shown in Fig. 1. The basic charac-
teristic of this modular structure is the direct correspondence
between pairs of system variables and real power flows: the
product of the two variables involved in each dashed line
of the graph has the physical meaning of “power flowing
through the section”. The two basic blocks shown in Fig. 1
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Fig. 1. Basic blocks: elaboration block (e.b.) and connection block (c.b.).

are named “elaboration block” (e.b.) and “connection block”
(c.b.). The circle present in the e.b. is a summation element
and the black spot represents a minus sign that multiplies the
entering variable. There is no restriction on x and y other
than the fact that the inner product 〈x,y〉 = xTy must have
the physical meaning of a “power”.

The e.b. and the c.b. are suitable for representing both
scalar and vectorial systems. In the vectorial case, G(s)
and K are matrices: G(s) is always square, K can also
be rectangular. While the elaboration block can store and
dissipate energy (i.e. springs, masses and dampers), the
connection block can only “transform” the energy, that is,
transform the system variables from one type of energy-field
to another (i.e. any type of gear reduction). Please refer to
[3], [4] and [5] for further details. A list of references of
examples of application of the POG technique can be found
in [6].

III. THE TIRE-SOIL INTERACTION: THE PACEJKA

APPROACH

Let’s consider the bicycle model shown in Fig.2. The
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Fig. 2. Bicycle model of a rear traction vehicle.

slip-ratio λ = λa of each wheel is defined as follows:

λ = λa =
ω R − vx

vx

(1)

where vx and vy represent the velocities of the wheel at
the soil contact point in the direction of the tire axes x
and y, ω is the angular velocity of the wheel and R is the
rolling radius of the tire. In the literature one can also find
the slip-ratio λ defined as

λ = λb =
ω R − vx

ω R
(2)

Both the definitions (1) and (2) can be used only when
the denominators are positive: vx > 0 and ω R > 0. This
limitation can be overcome taking the absolute value of the
denominators:

λa =
ω R − vx

|vx|
, λb =

ω R − vx

|ω R|
(3)

Note that the slip-ratio λa cannot be used when vx = 0
(the tire rotates without translating) and λb cannot be used
when ω = 0 (the tire translates without rotating).

Pacejka’s magic formulas [1] are usually used to calculate
the longitudinal force Fx, the lateral force Fy and the self-
aligning torque Mz of each tire as a function of the slip-
ratio λ, the slip-angle α = arctan

vy

vx
, the vertical load

Fz and the camber angle γ (see Fig. 3 for forces Fx and
Fy). A limit of these formulas is the fact that they provide
zero forces and torques when the slip-ratio λ is zero and in
some cases they do not work correctly such as for example
when the vehicle is stopped on an inclined surface: in
fact in this case the slip-ratio is zero, but a longitudinal
force must be present to keep the vehicle at rest on the
inclined surface. Moreover Pacejka’s formulas mix together
the “slip” and “skid” phenomena, in fact for small values of
λ these formulas essentially describe the “slip” of the tire
due to the rolling of the wheel when a force is generated at
the ground, while for large values of λ the same formulas
mainly describe the “skidding” of the wheel when the tire
loses the adherence to the ground.

A weak point of definitions (3) is the fact that they are not
symmetric with respect to the terms vx and ω R, that is they
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Fig. 3. Modulus of forces Fx and Fy normalized with respect to a
constant vertical load Nz .
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Fig. 4. Four different definitions of the slip ratio λ as a function of ω R
vx

:
λa, λb, λ1 and λ2.

have quite different behaviours when vx → 0 and ω → 0.
Alternative definitions for the slip-ratio which behave in a
symmetric way with respect to vx and ω are the following:

λ1 =
ω R − vx

min(|ω R|, |vx|)
, (4)

and

λ2 =
ω R − vx

2

(

1

|ω R|
+

1

|vx|

)

(5)



A comparison between the four different definitions λa,
λb, λ1 and λ2 as function of the ratio ω R

vx
is shown in

Fig. 4 where the picture has been drawn in semi-logarithmic
scale. Note that all these definitions of slip ratio act in the
same way in the vicinity of the point ω R

vx
. When ω R

vx
→ 0

variables λ1, λ2 and λb tend to −∞ and λa goes to −1,
when ω R

vx
→ ∞ variables λ1, λ2 and λa tend to +∞ and

λb goes to 1.
The typical graphical shape of the Pacejka’s formula

when α = 0 is shown in Fig. 5. This formula gives the
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Fig. 5. The typical shape of the Pacejka’s formula when α = 0.

friction coefficient µ = fx

fz
(fx and fz are the longitudinal

and normal contact forces) as a function of the slip ratio
λ. Note that when λ < λ0 the tire-soil interaction is only
“slipping”, while when λ > λ0 the interaction is also
“skidding”.

IV. THE TIRE-SOIL INTERACTION: THE ENERGETIC

APPROACH

Notations: symbols [~a×], |[~a]| and A• are defined as follows:

~a =





ax

ay

az



 , [~a×] =





0 −az ay

az 0 −ax

−ay ax 0





|[~a]| =

[

I3 0

[~a×] I3

]

, A• =

[

A 0

0 A

]

where I3 and 0 are the 3 × 3 identity and zero matrices.
The modulus of vector x will be denoted as |x|.
The POG energetic approach. Let us consider the dynamic
system shown in Fig. 6 composed by a wheel with an
elastic interaction with the ground. The dynamic model of
this system described by using the Power-Oriented Graphs
technique is shown in Fig.8. This POG scheme puts in
evidence how the powers flow through the system by using
a six-dimensional vectorial notation. The power section 1 of
the POG scheme is characterized by the force and velocity
vectors 0~Fr0 and 0 ~Vr0 of point r0 (i.e. the center of mass
of the wheel) expressed in the inertial frame Σ0.
Coordinate transformation: Σ0 → Σr. The unitary matrix
rR0 ∈ R3×3 present in the connection block between
power sections 1 and 2 is the rotation matrix which
transforms vectors from the inertial frame Σ0 to the frame

r~Fcr ~Vv
c

r ~Vs
c

r~Ec

r~Fr0

r ~Vr0

r~cr0

r0

rNr0

C

z

x
Σr

z

x

Σ0

Fig. 6. The considered system: a wheel with an elastic interaction with
the ground.
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Fig. 7. The contact area of the tire on the ground.

Σr rigidly connected to the wheel and with its origin in
r0. Vectors r~Fr0 and r ~Vr0 which characterize the power
section 2 denote the force and velocity vectors of point r0

expressed in frame Σr. They are defined as follows:

r~Fr0 =

[

r~fr0
r~τr0

]

, r ~Vr0 =

[

r~vr0
r~ωr0

]

where r~fr0, r~τr0, r~vr0 = [ rvr0x, rvr0y, rvr0z]
T and

r~ωr0 = [ rωr0x, rωr0y, rωr0z]
T are the force, the torque,

the linear and angular velocity vectors of point r0.
The mechanical dynamics. The POG elaboration blocks
present between power sections 2 and 3 represent the
mechanical dynamics of the wheel. Matrix rNr0 is the six-
dimensional mass-inertia matrix of the wheel expressed in
frame Σr:

rNr0 =

[

Mr 0

0 rJr

]

and

Mr =





mr

mr

mr



 , rJr =





Jrx

Jry

Jrz
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Fig. 8. The POG dynamic model of the wheel and the elastic tire-soil interaction.

where mr is the mass of the wheel and Jrx, Jry, Jrz are the
principal axes inertia momenta of the wheel. The dynamics
of the wheel in the “inertial” frame Σ0 is described by the
“Newton’s” equation 0~Ft

r0 = d
dt

( 0Nr0
0 ~Vr0) where 0~Ft

r0

is the total force acting on the center of mass of the wheel.
It can be shown that this equation can be transformed into

r~Ft
r0 = [r~ωr0×]• rNr0

r ~Vr0 + d
dt

( rNr0
r ~Vr0)

where, for the considered system, the total force r~Ft
r0 =

r~Fr0−
r~Fc

r0 is the sum of the external forces r~Fr0 and the
contact forces r~Fc

r0 expressed in the reference frame Σr.
Connection block: r0 →C. For a rigid body, a force r~Fc

applied to point C can be transformed to the equivalent
force r~Fr0 applied to point r0 by using the following
transformation matrix |[r~cr0]|:

r~Fr0 = |[r~cr0]|
r~Fc =

[

I3 0

[r~cr0×] I3

][

r~fc
r~τc

]

. (6)

For duality the transpose matrix |[r~cr0]|
T relates velocity

r ~Vr0 to velocity r ~Vr
c :

r ~Vr
c = |[r~cr0]|

T r ~Vr0 =

[

I3 [r~cr0×]T

0 I3

] [

r~vr0
r~ωr0

]

. (7)

Both the transformations (6) and (7) are present in POG
scheme of Fig.8 in the connection block between the power
sections 3 and 4 .
The elastic dynamics. The dynamics of the elastic inter-
action of the tire with the ground is represented by the
POG elaboration block present between sections 4 and 5 .
This elastic dynamics is described by the equation r ~Vc =
d
dt

( rEc
r~Fc) where r ~Vc = r ~Vr

c − r ~Vs
c is the difference

between the rolling r ~Vr
c and sliding r ~Vs

c velocities of the
contact point C. Matrix rEc ( rK-1

c) is the six-dimensional
elasticity (stiffness) matrix of the tire-soil contact area (see

Fig. 7 centered in point C:

rEc =

[

rEt
c 0

0 rEr
c

]

= rK-1
c (8)

and

( rEt
c)

-1 =





kx

ky

kz



 , (rEr
c)

-1 =





0
0

kmz



 (9)

where kx, ky, kz , kmz are the translational and rotational
stiffness coefficients of the tire-soil contact area. Note that
in (8) the structure of matrices rEt

c and rEr
c is a particular

case used for this study, but in the general case they are
full matrices. Matrix rE-1

c relates the elastic displacement
r~pc = [ rpcx, rpcy,

rpcz,
rδcx, rδcy,

rδcz]
T to the force

r~Fc generated in the contact point C:

r~Fc =

















rfcx
rfcy
rfcz

0
0

rτcz

















= rE-1
c

r~pc =

















kx
rpcx

ky
rpcy

ky
rpcz

0
0

kmz
rδcz

















.

The six-dimensional elastic element rE-1
c located in the

contact point C is characterized at an end by the rolling
velocity r ~Vr

c of the tire and at the other end by the
sliding velocity r ~Vs

c due to the “skidding” and “slipping”
phenomena: r ~Vs

c = r ~Vcsk + r ~Vcsl (see Fig. 8).
The skidding. The POG elaboration block present between
power sections 5 and 6 describes the “skidding” of the tire
on the ground. Let r~pk = [ rpcx, rpcy, 0, 0, 0, rδcz]

T and
r~fk = [ rfcx, rfcy, 0, 0, 0, rτcz]

T denote the orthogonal
projection of the displacement and force vectors r~pc and
r~Fc on the three-dimensional subspace composed by the
contact plane x-y where the tire interacts with the ground
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Fig. 9. Hysteresis function: the input ahy of the linear filter (13) is a
function of the parameter µk(r~Fc) defined in (11).

and the direction z of the torsional displacement and mo-
mentum. In the general case vectors r~pk and r~fk are not
parallel, see Fig. 7. The tire starts skidding when the vector
r~fk exceeds a skidding ellipsoid Sk defined as follows:

Sk( r~Fc, a) =
{

r~fk : µk( r~Fc) = a
}

(10)

where

µk(r~Fc)=

√

(

rfcx

rfcz

)2

+

(

rfcy

γy
rfcz

)2

+

(

rτcz

γm
rfcz

)2

. (11)

The parameters a, γya and γma are the half lengths of
the principal axes of the skidding ellipsoid Sk( r~Fc, a):
parameter a is used to linearely expand or contract the
dimension of the ellipsoid, while parameters γy and γm

can be used to properly define its shape. The dashed line
shown in Fig. 7 represents the intersection of the skidding
ellipsoid Sk with the x-y contact plane. Function µk(r~Fc)
is a normalized measure of the distance of vector r~fk from
the skidding ellipsoid Sk: when µk < a the vector is inside
the ellipsoid, when µk > a the vector is outside. The
skidding velocity r ~Vcsk = [ rVkx, rVky , 0, 0, 0, rωkz] of
the contact point C can be defined as follows:

r ~Vcsk =











0 if µk(r~Fc) ≤ a

Ks

(

µk(r~Fc)−a
)2 r~pk

|r~pk|
otherwise

(12)
where Ks is a proper positive coefficient and a is the output
of a first order linear filter:

ȧ =
1

τhy

(ahy − a) (13)

characterized by the time constant τhy and by the input
ahy = ahy(µk) shown in Fig. 9. From (12) it is evident
that the skidding velocity r ~Vcsk always has the same
direction of the displacement vector r~pk: this means that the
skidding is always described as a dissipative phenomenon.

The quadratic function Ks

(

µk(r~Fc)−a
)2

used in (12) is
“one” of the possible functions that can be used outside the
ellipsoid to force the vector r~fk to quickly enter back into
the skidding ellipsoid: other positive monotonic increasing

λs(µl)

µlk1

m1

µ0

λ0

Fig. 10. Slipping function λs(µl) that describes the slip ratio λs as a
function of the friction coefficient µl.

functions could also be used.
The slipping. The POG elaboration block present between
power sections 6 and 7 describes the “slipping” of the tire
on the ground. The tire slips on the ground only when both
the contact force rfcx in the x-direction and the angular
velocity of the wheel rωr0y in the y-direction are not zero.
The slipping velocity r ~Vcsl = [ rVlx, rVly, 0, 0, 0, rωlz ]
of the contact point C can be defined as follows:

r ~Vcsl = min(| rωr0y Re|, |
rvr0x|) |λs(µl)|

r~pk

| r~pk|
(14)

where Re = | r~cr0| is the effective rolling radius of the
wheel, µl =

rfcx
rfcz

is the modulus of the friction coefficient
of the contact point C in the x direction and function λs(µl)
if the inverse of the function µl(λ) that in the Pacejka’s
formula expresses the µ coefficient as a function of the slip
ratio λ, see Fig. 5. The function λs(µl) that describes the
slipping behaviour has a shape (which depends on complex
physical phenomena) that can be fitted, for example, by the
following function:

λs(µl) =
m1 µl

1 −
(

µl

k1

)2 (15)

where coefficients m1 and k1 describes respectively the
slope in the origin and the ascissa of the asymptote of
the function, see Fig. 10. From (14) it is evident that also
the slipping phenomenon is described as “dissipative”, in
fact also the slipping velocity r ~Vcsl always has the same
direction of the displacement vector r~pk. The structure of
eq. (14) has been obtained from the definition (4) of the slip
ratio λ1 substituting λ1 with λs(µl) and the term (ω R− vx)
with the velocity r ~Vcsl. In this way one obtains that the
slipping velocity r ~Vcsl is zero when rωr0y = 0 and when
rvr0x = 0, as desired. A similar definition for the slipping
velocity r ~Vcsl could also be obtained referring to definition
(5) of the slip ratio λ2.

V. SIMULATIONS

The dynamic behaviour of the proposed model for the
tire-soil interaction has been tested in simulation on a
four wheel car: a view of the considered car in Virtual
Reality environment is shown in Fig. 11. The Simulink-
SimMechanics block scheme of the considered four wheel



car is shown in Fig. 12. The grey blocks represent the
mechanical dynamics of the wheels, while the green blocks
implement the dynamics of the tire-soil interaction as it has
been described in Sec. IV.

Fig. 11. A view of the modelled four wheel car in Virtual Reality
environment.

The main parameters used in simulation are the fol-
lowing: mc = 1192 kg mass of the vehicle body;
mr = 40 kg mass of each wheel; [Jrx, Jry, Jrz] =
[0.885, 1.279, 0.885] kg m2 inertia momenta of each wheel;
R = 0.325 m radius of each wheel; Ls = 2.52 m
distance between front and rear axle shafts; Lw = 1.5 m
distance between left and right wheels; Ksp = 80000 N/m,
bsp = 3000 N s/m stiffness and friction coefficients of the
suspensions; brol = 40 N m s/rad rolling friction coefficient
of the wheels; [kx, ky, kz] = [360000, 360000, 250000]
N/m, kmz = 1800 N m/rad translational and rotational
stiffness coefficients of the tire; γy = 0.7, γm = 2, Ks = 60

parameters of the skidding velocity r ~Vcsk defined in (12);
τhy = 0.02 s time constant of the linear filter (13); a0 = 0.9,
a1 = 0.5 parameters of function ahy(µk) defined in Fig. 9;
m1 = 0.04, k1 = 1.21 parameters of the slipping function
λs(µl) defined in (15). At t = 0 the suspensions and the
tires are unloaded. The car is excited with a steering torque
Tst(t):

Tst(t) = 400 cos(t) Nm

and with a traction torque Ttr(t):

Ttr(t) = 1000(1− cos(2t)) Nm

applied on both the front wheels. The torque Tst(t) is used
to steer the front wheels. The steering angle δ(t) of the
car is shown in the upper part of Fig. 13. The amplitude
of the sinusoidal traction torque Ttr(t) is high enough to
accelerate the car from zero to 15 km/h, see the lower
part of Fig. 13, and to cause the skidding of the front
wheels. All the simulation results reported in the following
figures (from Fig. 14 to Fig. 21) refer only to the front
left wheel of the car. The forces rfcx, rfcy, rfcz that
the tire applies to the ground at the contact point C are

shown in Fig. 14. The oscillation of the normal force rfcz

in the first part of the simulation is due to the initial settling
dynamics of the suspensions. The forces rfcx and rfcy

acting on the ground in x and y directions are the sum
of the forces caused by both the skidding and slipping
phenomena. The corresponding trajectory of the normalized
force vector rfn = (rfcx, rfcy)/|

rfcz| moving within the
skidding ellipsoid Sk(a) is reported in Fig. 15: the two
dashed lines show the positions of the skidding ellipsoid
Sk(a) when a = a0 and a = a1. Note that the wheel starts
skidding only when the normalized vector rfn exceeds the
ellipsoid Sk(a0) (at instants t1 = 0.86 s and t3 = 4.1 s) and
stops skidding when the vector rfn enters into the ellipsoid
Sk(a1) (at instant t2 = 2.29 s). To help the reader, in the
figures that report time behaviours of variables, the instants
t1, t2 and t3 are evidenced with vertical dashed magenta
lines.

The skidding velocities rVkx, rVky and rωkz generated
at the contact point C are shown in Fig. 16. Note that
these velocities are different from zero only when the
tire is skidding. The hysteresis behaviour associated to the
skidding phenomenon is clearly shown in Fig. 17: in the left
part of the figure it is reported the parameter a(µk) which
defines the amplitude of the skidding ellipsoid Sk(a); the
right part of the figure shows the modulus of the skidding
velocity | r ~Vcsk| as a function of parameter a(µk).

The slipping velocities rVlx, rVly and rωlz at the contact
point C are shown in Fig. 18. Note that the slipping
velocities go to zero only when rωr0y = 0 or when
rvr0x = 0, see definition (14). A comparison between tire
velocity rωr0yRe and wheel velocity rvr0x is proposed in
Fig. 19: the two velocities are very close when the tire is
only slipping while they are quite different when the tire is
skidding. The time behaviour of the slip ratios λa(t), λb(t)
and λs(t) defined in (3) and in 15 are given in Fig. 20. The
three slip ratios are quite different when the tire is skidding
while they are quite similar when the tire is only slipping,
see the zoom in the lower part of the figure. Note that during
slipping the variable λs differs a little bit from the other two
slip ratios because it is used to load and unload the elastic
element which is present in the proposed dynamic model
but is absent in the Pacejka static model. Fig. 21 has been
obtained drawing the friction coefficient µl as function of
the three slip ratios λa, λb and λs one obtains. This figure
clearly shows how the proposed model is able to reproduce
the typical shape of the Pacejka’s formula, see Fig. 5.

VI. CONCLUSIONS

In the paper a three-dimensional dynamic model of the
elastic interaction of a tire with the ground has been
presented. The system has been modelled using the POG
graphical technique and then implemented in Simulink-
SimMechanics environment. The simulation results show
that the proposed model can be a good substitute of the
Pacejka’s formulas avoiding some drawbacks. In particular



CS1CS2

Wheel RR

CS1CS2

Wheel RL

CS1 CS2

Wheel FR

CS1 CS2

Wheel FL

CG

Virtual Reality

Conn1

Torque FR

Conn1

Torque FL

t

Time

Susp.

Suspension RR

Susp.

Suspension RL

Steer & Susp.

Suspension FR

Steer & Susp.

Suspension FL

B F

B F

B
F

B
F

CS1
CS3

CS2

Mozzo FR

CS1
CS2

CS3

Mozzo FL

B
F

B
F

B
F

B
F

Clock
CS1

CS5

CS4

CS3

CS2

CS6

Body

Conn1

Base Joint

CS1

CS2

Bar

Tire−soil 
 contact

 Contact RR

Tire−soil 
 contact

 Contact RL

Tire−soil 
 contact

 Contact FR

Tire−soil 
 contact

 Contact FL

Fig. 12. The Simulink-SimMechanics block scheme of the considered four wheel car.
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Fig. 13. Steering angle δ(t) and car velocity Vx in the forward direction.
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Fig. 14. Forces rfcx, rfcy, rfcz at the contact point C.

the proposed model can also be used when the car or
wheel velocities are zero or when the vehicle is at rest on
an inclined surface. An important feature of the proposed
model is the use of an elastic element for describing the
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Fig. 15. Trajectory of the normalized force (rfcx, rfcy)/| rfcz | within
the skidding ellipsoid Sk(a).

interaction of the tire with the ground. This elastic element,
which surely is present in the physical system, is not
considered in the Pacejka model. So, the presented model
seems to be particularly suitable for the study of all the
physical situations in which the presence of the tire elasticity
can be important, such as, for example, the design and the
tuning of the ABS and ESP control systems.
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C.
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Fig. 19. Tire velocity rωr0yRe (dashdotted blue) and wheel velocity
rvr0x (solid red) at the contact point C.
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(dashed black).
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and µl(λs) (dashed black) of the contact point C.
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