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Abstract— In the paper the Power-Oriented Graphs (POG)
technique is used for modelling m-phase permanent magnet
synchronous motors and a study on the rotor flux is given.
The POG model of the considered electrical motor shows its
internal structure from a “power” point of view. The dynamic
model of the motor is as general as possible and it considers
an arbitrary odd number of phases. Generalized orthonormal
transformations allow to write the dynamic equations of the
system in a very compact form. The rotor flux is analyzed, in
particular in order to minimize currents needed for the torque
generation. An optimal shape for the rotor flux is presented.
The model is finally implemented in Matlab/Simulink and some
simulations are carried out.

I. INTRODUCTION

In this paper the dynamic model of a permanent magnet
synchronous electric motor is obtained using the modeling
technique named “Power-Oriented Graphs” (POG), see [1]
and [2]. The obtained POG graphical representation shows
very well the internal structure of the motors from a “power”
point of view: the electric part of the motor interacts with
the mechanical one by means of a “connection” block which
neither store nor dissipate energy. With a proper choice of
the reference frame, the dynamic model of the electric motor
becomes very simple and clear. To obtain the dynamic model
of the motors, a Lagrangian approach has been used.

The paper is organized as follows. Section II states the
basic properties of the POG modelling technique. Section III
shows the details of POG modelling of n-phase permanent
magnet synchronous motors and the study of the rotor flux in
order to minimize currents needed for the torque generation.
Finally, in Section IV some simulations are reported.

A. Notations

In the paper the following notations will be used:
- Row matrices:

i

|[ Ri ]|
1:n

=
[

R1 R2 . . . Rn

]

- Column and diagonal matrices:
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|[ Ri ]|
1:n

=








R1

R2

...
Rn
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|[ Ri ]|
1:n
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R1

R2

. . .
Rn








- Full matrices:

i j

|[ Ri,j ]|
1:n 1:m

=








R11 R12 · · · R1m

R21 R22 · · · R2m

...
...

. . .
...

Rn1 Rn2 · · · Rnm








- The symbol

b∑

n=a:d

cn = ca + ca+d + ca+2d + ca+3d + ...

will be used for representing the sum of a succession of
numbers cn, where the index n ranges from a to b with
increment d that is, using the Matlab notation, n = [a :d :b].

II. THE BASES OF POWER-ORIENTED GRAPHS

The “Power-Oriented Graphs” are “signal flow graphs”
combined with a particular “modular” structure which es-
sentially uses only the two blocks shown in Fig. 1. The
basic characteristic of this modular structure is the direct
correspondence between pairs of system variables and real
power flows: the product of the two variables involved in
each dashed line of the graph has the physical meaning of
“power flowing through the section”. The two basic blocks
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Fig. 1. Basic blocks: elaboration block (e.b.) and connection block (c.b.).

shown in Fig. 1 are named “elaboration block” (e.b.) and
“connection block” (c.b.). The circle present in the e.b.
is a summation element and the black spot represents a
minus sign that multiplies the entering variable. There is
no restriction on variables x and y other than the fact that
their inner product 〈x,y〉 = xTy must have the physical
meaning of a “power”. The e.b. and the c.b. are suitable
for representing both scalar and vectorial systems. In the
vectorial case, G(s) and K are matrices: G(s) is always
square, K can also be rectangular. While the elaboration



block can store and dissipate energy (i.e. springs, masses
and dampers), the connection block can only “transform” the
energy, that is, transform the system variables from one type
of energy-field to another (i.e. any type of gear reduction).
In the linear vectorial case when G(s) = [M s+R]-1, (M is
symmetric and positive definite) the energy Es stored in the
e.b. and the power Pd dissipating in the e.b. can be expressed
as:

Es =
1

2
yTMy, Pd = yTRy .

There is a direct correspondence between the POG represen-
tations and the corresponding state space descriptions. For
example, the system

{
L ẋ = Ax + Bu

y = BTx
L = LT > 0 (1)

can be represented by the POG scheme shown in Fig. 2.
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Fig. 2. POG block scheme of a generic dynamic system.

When an eigenvalue of matrix L tends to zero (or to
infinity), system (1) degenerates towards a lower dimension
dynamic system. In this case, the dynamic model of the
“reduced” system can be directly obtained from (1) by using
a simple “congruent” transformation x = Tz (T is constant):

{

TTLTż =TTATz+TTBu

y =BTTz
⇔

{

Lż = Az+Bu

y = B
T
z

where L = TTLT, A = TTAT and B = TTB. If matrix
T is time-varying, an additional term TTLṪz appears in
the transformed system. When matrix T is rectangular, the
system is transformed and reduced at the same time.

III. ELECTRICAL MOTORS MODELLING

In the paper the dynamic model of a permanent magnet
synchronous electric motor is obtained using the modeling
technique named “Power-Oriented Graphs” (POG). In par-
ticular we will refer only to permanent magnet synchronous
electrical motors with an odd number m of phases. The
considered multi-phase electrical motor is characterized by
the following parameters:

m : number of motor phases;
p : number of polar expansions;

θ, θr : electric and rotor angular positions: θ = p θr;
ω, ωr : electric and rotor angular velocities: ω = p ωr;
Nc : number of coils for each phase;
Ri : i-th phase resistance (p = 1);
Li : i-th phase self induction coefficient (p = 1);
Mij : mutual induction coefficient of i-th phase coupled

with j-th phase (p = 1);
φ(θ) : rotor permanent magnet flux;
φc(θ) : total rotor flux chained with stator phase 1;
φci(θ) : total rotor flux chained with stator phase i-th;

ϕr : maximum value of function φ(θ);
ϕc : maximum value of function φc(θ);
Jr : rotor inertia momentum;
br : rotor linear friction coefficient;
τr : electromotive torque acting on the rotor;
τe : external load torque acting on the rotor;
γ : basic angular displacement;
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Fig. 3. Structure of a five-phase motor in the case of single polar expansion
(p = 1).

Fluxes φ(θ) and φc(θ) satisfy the relation:

φc(θ) = p Nc φ(θ) = p Nc ϕr φ̄(θ) = ϕc φ̄(θ)

where ϕc = p Nc ϕr and φ̄(θ) is the rotor flux function
normalized with respect to its maximum value ϕr.

Let γ = 2π
m

denote the basic angular phase displacement
for electrical motors with m phases. The following hypothe-
ses are assumed:
H1) Function φ(θ) is periodic with period 2π;
H2) Function φ(θ) is an even function of θ;
H3) Function φ(θ + π

2 ) is an odd function of θ;
H4) For θ = 0 the rotor flux φc(θ) chained with phase 1 is
maximum;
H5) The electrical motor is homogeneous in its electrical
characteristics.
Let us introduce the state vectors q̇, q and the generalized
flux vector Φ(q):

q̇ =

[

I

ω

]

, q =

[

Q

θ

]

, Φ(q) =

[

Φc(θ)

0

]



where I and Φc are the current and flux vectors:

I =








I1

I2

...
Im








, Φc(θ) =








φc1(θ)
φc2(θ)

...
φcm(θ)








=










φc(θ)
φc(θ − γ)
φc(θ − 2γ)

...
φc(θ−(m−1)γ)










.

The dynamic equations of the electric motors can be obtained
by using the following “Lagrangian” differential equation

d

dt

(
∂K

∂q̇T

)

− ∂K

∂qT
= Ve −Re q̇ (2)

where K is the Lagrangian function of the system, Ve is
the extended input vector and Re is the extended dissipating
matrix. The power Pd dissipated in the system can be
expressed as follows: Pd = q̇T Re q̇. For electric motors,
the Lagrangian K is function of the electric angle θ, but
it is not a function of the electric charge Q. For multi-
phase synchronous motors the Lagrangian function K has
the following structure:

K =
1

2
q̇T Le q̇ − q̇T Φ(q) (3)

where Le is the extended energy matrix of the system. In
this case we have that:

d

dt

(
∂K

∂q̇T

)

= Le q̈ − ∂Φ

∂q
q̇ ,

∂K

∂qT
= −∂ΦT

∂qT
q̇ .

From (2) one obtains the dynamic equations of the system:

Le q̈ = Ve −Re q̇ −
[
∂ΦT

∂qT
− ∂Φ

∂q

]

q̇ . (4)

The term ∂K
∂qT present in the left part of equation (2)

represents the back electromotive voltage generated by the
rotor movements. The last term of equation (4) is a skew-
symmetric term which represents an internal energy redistrib-
ution. From (4) one directly obtains the differential equations
of the motor:
[

L 0
0 Jr

]

︸ ︷︷ ︸

Le

[
İ

ω̇r

]

︸ ︷︷ ︸

q̈

=−
[

R Kτ (θ)
−KT

τ (θ) br

]

︸ ︷︷ ︸

Re + We

[
I

ωr

]

︸ ︷︷ ︸

q̇

+

[
V

−τe

]

︸ ︷︷ ︸

Ve

(5)
Matrices Le, Re and We are defined as follows:

Le =

[
L 0
0 Jr

]

, Re =

[
R 0
0 br

]

, We =

[
0 Kτ (θ)

−KT
τ (θ) 0

]

where Kτ (θ) and R are, respectively, the torque vector and
the dissipating matrix of the motor:

Kτ (θ) =
∂ΦT

c(q)

∂θ
, R = p

i

|[ Ri ]|
1:m

(6)

and L > 0 is the positive-definite inductance matrix:

L = p










L1 M12 M13 · · · M1m

M12 L2 M23 · · · M2m

M13 M23 L3 · · · M3m

...
...

. . .
...

M1m M2m M3m · · · Lm










. (7)

Writing system (5) in a compact form one obtains:

Le q̈ = −Req̇−Weq̇ + Ve .

System (5) can be graphically represented by the POG
scheme shown in Fig. 4. The elaboration blocks present
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Fig. 4. POG scheme of the multi-phase electric motor.

between the power sections 1 and 2 represent the Electrical
part of the system, while the blocks between sections 3

and 4 represent the Mechanical part of the system. The
connection block between sections 2 and 3 represents the
conversion of energy and powers (without accumulation nor
dissipation) between the electrical and mechanical domains.
Function φc(θ) is even and periodic of period 2π (see
hypotheses H1 and H2) and therefore it can be developed
in Fourier series of cosines with only odd harmonics:

φc(θ) = ϕc φ̄(θ) = ϕc

∞∑

n=1:2

an cos(nθ) . (8)

From (8) it follows that flux vector Φc(θ) can be rewritten
in a compact form as:

Φc(θ) = ϕc

h∣
∣
∣
∣
∣

[ ∞∑

n=1:2

an cos[n(θ − h γ)]

]∣
∣
∣
∣
∣

0:m−1

. (9)

From (6), the torque vector Kτ (θ) can be expressed as
follows:

Kτ (θ) = p ϕc

h∣
∣
∣
∣
∣

[

−
∞∑

n=1:2

n an sin[n(θ−h γ)]

]∣
∣
∣
∣
∣

0:m−1

. (10)

Let us now consider the following orthonormal transforma-
tion (see the generalized Concordia transformation in [4]):

tTT
ω(θ) = ωTt(θ) =

√

2

m













k h∣
∣
∣
∣
∣

[
cos(k (θ − h γ))

sin(k (θ − h γ))

]∣
∣
∣
∣
∣

1:2:m−2 0:m−1

h∣
∣
∣

[
1√
2

]∣
∣
∣

0:m−1













.
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Fig. 5. POG scheme of a multi-phase electrical motor in the transformed space Σω.

Matrix ωTt(θ) represents a multi-dimensional rotation in
the state space, is a function of the electrical motor angle
θ and transforms the electric variables V and I from the
original reference frame Σt to a transformed rotating frame
Σω. Applying transformation ωTt to matrices L, R and
Kτ (θ), from (5) one obtains the transformed system:

[
ωL 0
0 Jr

][
ω İ

ω̇r

]

=−
[

ωR+Jω
ωL ωKτ

− ωKT
τ br

][
ωI

ωr

]

+

[
ωV

−τe

]

(11)

where ωI = ωTt I, ωV = ωTt V, ωR = ωTt R
tTω =

R = p R Im and ωL = ωTt L
tTω. Let the self and mutual

induction coefficients of matrix L be defined as Mi j =
M0 cos((i − j)γ), Li = ∆0 + M0 for i, j ∈ {1, 2, ..., m}.
The transformed matrix ωL has the following structure:

ωL= p












∆0+ m M0

2 0 0 0 · · · 0
0 ∆0+ m M0

2 0 0 · · · 0
0 0 ∆0 0 · · · 0
0 0 0 ∆0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · ∆0












where ∆0 and M0 are proper positive parameters. The struc-
ture of transformed torque vector ωKτ (θ) is the following:

ωKτ (θ) = ωTt Kτ (θ) = −p ϕc

√
m

2
·

·



















k∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣











∞∑

n=0:2m

[(n+k) an+k+(n−k) an−k] sin(nθ)

∞∑

n=0:2m

[(n+k) an+k−(n−k) an−k] cos(nθ)











∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1:2:m−2

−
√

2

∞∑

n=m:2m

nan sin (nθ)



















. (12)

Let ω = θ̇ = p θr denote the time-derivative of the electric

angle θ. The structure of matrix Jω in (11) is:

Jω =








k∣
∣
∣
∣

[
0 −k ω

k ω 0

]∣
∣
∣
∣

1:2:m−2

0

0 0








.

The POG scheme describing the considered electrical motor
in the transformed frame Σω, see eq. (11), is shown in Fig. 5.
If the m phases of the rotor are star-connected then the
system reduces to order m − 1. Note that vector ωKτ (θ) is
composed only by the harmonics sin(nθ) and cos(nθ) where
n is an integer number multiple of 2m. Vector ωKτ (θ) can be
easily computed knowing the coefficients an of the Fourier
series of the rotor flux, see eq. (8). Let vector ωKτ (θ) be
rewritten in the following form:

ωKτ (θ) =








k∣
∣
∣
∣

[
ωKkd(θ)
ωKkq(θ)

]∣
∣
∣
∣

1:2:m−2
ωKm(θ)








. (13)

Remarks: 1) ωKkd(θ) and ωKkq(θ) are respectively “odd”
and “even” periodic functions of frequency ω = 2m; they
are influenced by all the odd components ai of the Fourier
series of function φ̄c(θ), except for i ∈ {m : 2m :∞};
2) ωKkq(θ) are the only components of vector ωKτ (θ)
whose mean value can be constant and different from zero;
3) the last component ωKm(θ) is a periodic function of
frequency ω = m, “odd” with respect to θ, “even” with
respect to θ+ π

2m
and influenced only by the components ai,

for i ∈ {m : 2m :∞}, of the Fourier series of the flux φ̄c(θ).
In Fig. 8 functions ωK̄kd(θ), ωK̄kq(θ) and ωK̄m(θ) are
shown when the rotor flux φ̄c is odd-polynomial interpolated
(see Fig. 6 where φ̄r(α, θ) is a polynomial of order r with
only odd powers of θ) and sinusoidally interpolated (see
Fig. 7). These are the functions given in (12) and (13),
normalized with respect to the common coefficient pϕc

√
m
2 ,

referred to the case m = 7 and considering the Fourier
series until harmonic n = 1000. Functions ωK̄kd(θ), for
k ∈ {1 : 2 : m − 2}, are shown in the upper part of the two
pictures of Fig. 8 (red for k=1, blue for k=3 and green for
k =5). Function ωK̄1q(θ) has usually an amplitude greater
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than the other ωK̄kq(θ). Function ωK̄m(θ) is shown in the
bottom part of the two pictures of Fig. 8. Note that, as stated
in the Remarks, functions ωK̄kd(θ) are odd and periodic
with ω=2m, functions ωK̄kq(θ) are even and periodic with
ω = 2m and function ωK̄m(θ) is odd with respect to θ,
even with respect to θ + π

2m
and with frequency ω=m. The

analysis of the components of torque vector ωKτ is useful to
calculate the optimal rotor flux that minimizes the currents
needed to generate the desired torque, see [4] and [5].

Proposition: the torque vector ωKτ can be constant (not
function of the electric angle θ) only for the flux functions
φ̄(θ) which can be expressed in Fourier series as follows:

φ̄(θ) =

m−2∑

i=1:2

ai cos(i θ) . (14)

All the constant components of the torque vector ωKτ (θ)
can be obtained for n = 0:

ωKT
τ (θ)|n=0 = −ϕc p

√
m

2

[
k∣

∣
[

0 k ak

]∣
∣

1:2:m−2

0

]

. (15)

Main Result: among all the fluxes providing a constant vector
ωKτ , the one that minimizes the module of the current vector
I (and therefore the dissipated power) is given by:

φ̄(θ) = cos((m − 2) θ) . (16)

In Fig. 9 a schematic representation of the optimal flux is
given in the case of seven-phase motor with single polar
expansion. In this case the optimal shape of flux φ̄(θ) is a
cosine function of frequency ω = m−2 = 5.
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IV. SIMULATIONS

The model of the motor in the case of seven-phase star-
connected motor has been implemented in Matlab/Simulink.
The Simulink scheme clearly reflects the POG structure (see
Fig. 5) and it needs only standard blocks as integrator, gain,
adder. The simulation results presented in this Section have
been obtained with the following electrical and mechanical
parameters: m = 7, p = 1, R = 3 Ω, L0 = 0.1 H,
M0 = 0.08 H, Nc = 100, Na = 200 (number of considered
harmonics in the Fourier series), ϕr = 0.02 W, Jr =
1.6 kg m2, br = 0.8 Nm s/rad, τe = 0. The torque τr

generated by current vector ωI is given by τr = ωKτ
ωI,

see Fig. 5. A constant torque τr is obtained for all current
vectors ωI satisfying relation ωI = ωI0 + Ker[ ωKτ ] where
ωI0 is a particular solution of the considered relation τr =
ωKτ

ωI. Among all these vectors ωI the one with the
minimum modulus is ωIdes = τd

|ωKτ |
ωK̂τ parallel to ωKτ

( ωK̂τ is the versor and τd is the desired torque). Among
all the fluxes given by (14), the one that minimizes the
modulus of the minimum current ωIdes is the one which
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Fig. 9. Shape of the rotor flux φ̄(θ) when m = 7 and p = 1.

maximizes the modulus of vector ωKτ under the constraint
of unitary maximum amplitude of the flux function φ̄(θ).
The considered input voltage in the transformed reference
frame is: ωV0 = (ωR + Jω

ωL)ωIdes + ωKτ ωr. Fig. 10
shows the phase currents in the transformed reference frame
for different shapes of rotor flux: sinusoidal (black dotted
line), 3-rd harmonic (blue dashed line), 5-th harmonic (red
solid line), sinusoidal interpolation (green solid line), odd-
polynomial interpolation (magenta dash-dotted line), when
the desired current ωIdes is calculated from the desired
torque τd = 10 Nm. The minimum current (the red solid
line in Fig. 10) is achieved using the optimal flux given
by the above relation (in this case it is the fifth harmonic).
Motor velocity ωm and generated torque τm for different
types of rotor flux are shown in Fig. 11. The 1-st, 3-rd and
5-th harmonics of direct and quadrature currents ωId and ωIq

in Σω reference frame are shown in Fig. 12 and Fig. 13.

V. CONCLUSIONS

In this paper a m-phase permanent magnet synchronous
motor has been modelled using the Power-Oriented Graphs
(POG) technique. This approach exhibits some advantages
in comparison with other graphical techniques and allows to
realize very compact schemes which can be easily translated
into Simulink models. The optimal shape of the rotor flux
which minimizes the module of the current vector has been
provided thanks to a deep analysis of the torque vector.
Simulations show the effectiveness of the realized model in
the case of a seven-phase star-connected motor.
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Fig. 10. Phase currents ω
I in the transformed reference frame for different

shapes of rotor flux.
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Fig. 11. Motor velocity ωm and generated torque τm for different types
of rotor flux.
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Fig. 12. First, third and fifth harmonics of direct currents ω
I in the

transformed Σω reference frame.
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Fig. 13. 1st, 3rd and 5th harmonics of quadrature currents ω
I in the

transformed Σω reference frame.


