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Abstract— In the paper the Power-Oriented Graphs
(POG) technique is used for modeling m-phase permanent
magnet synchronous motors and a study on the optimal
rotor flux is given. The POG model shows the “power”
internal structure of the considered electrical motor: the
electric part interacts with the mechanical part by means of
a “connection” block which neither stores nor dissipates
energy. The dynamic model of the motor is as general
as possible and it considers an arbitrary odd number of
phases. The rotor flux is analyzed, in particular in order to
minimize the currents needed for the torque generation, and
its optimal shape is given. The model is finally implemented
in Matlab/Simulink and the presented simulation results
validate the machine model and the rotor flux choice.

I. INTRODUCTION

The dynamic model of the multi-phase permanent mag-
net synchronous motors is known in literature obtained
using classical mathematical methods. In this paper the
dynamic model of these motors has been obtained using
a Lagrangian approach in the frame of the Power-Oriented
Graphs (POG) technique and, for the sake of generality,
a generic periodic shape for the rotor flux has been
considered. The obtained POG model is very compact,
simple and puts in evidence the “power” internal structure
of the motor. Using the POG approach and a Concordia-
like transformation, the torque vector of the motor as-
sumes a very simple structure which has been analyzed
to find the optimal shape of the rotor flux minimizing
the electrical power dissipation. The paper is organized
as follows. Sec. II gives the basic properties of the POG
modeling technique. Sec. III shows the details of POG
dynamic model of the m-phase synchronous motors and
the optimal shape of the rotor flux. Finally, in Sec. IV
some simulation results are reported.

A. Notations

Row matrices will be denoted as follows:
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and full matrices as:
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

The symbol “
∑b

n=a:d cn = ca + ca+d + ca+2d + . . .” will
be used to represent the sum of a succession of numbers
cn where the index n ranges from a to b with increment
d that is, using the Matlab symbology, n = [a : d : b].

II. THE BASES OF POWER-ORIENTED GRAPHS

The POG technique [1] is a graphical modeling tech-
nique similar to Bond Graph (BG) [2], [3] and Energetic
Macroscopic Representation (EMR) [4]. These techniques
use the “power interaction” between subsystems as basic
element for modeling. The two basic blocks used in the
POG technique are shown in Fig. 1: the “elaboration
block” (e.b.) and the “connection block” (c.b.). There
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Fig. 1. The POG basic blocks: the elaboration block (e.b.) on the left
and the connection block (c.b.) on the right.

is no restriction on the vector variables x and y other
than the fact that their inner product 〈x,y〉 = xTy must
have the physical meaning of a “power”. The e.b. is used
for modeling all the physical elements that store and/or
dissipate energy (springs, masses, dampers, etc.), i.e. all
the 1-port elements (capacitors C, inertias I and resistor R)
used in the BG technique. The c.b. is used for modeling all
the physical elements that “transform the power” without
losses (gear reductors, etc.), i.e. all the BG 2-port elements
(transformers TR, gyrators GY, modulated transformers
MTR and modulated gyrators MGY). The summation
element at the top of the e.b. is used for modeling all
the 3-port connection elements (0-junction and 1-junction)
of the BG technique. More details on Power-Oriented
Graphs are reported in [1], [5] and [6].



III. ELECTRICAL MOTORS MODELLING

In this paper we will refer only to permanent magnet
synchronous electrical motors with an odd number m of
phases. The electromechanical structure of a seven-phase
motor in the case of a single polar expansion (p = 1) is
shown in Fig. 2. The considered multi-phase electrical
motor is characterized by the following parameters:

m : number of motor phases;
p : number of polar expansions;

θ, θr : electric and rotor angular positions: θ = p θr;
ω, ωr : electric and rotor angular velocities: ω = p ωr;
Nc : number of coils for each phase;
Ri : i-th phase resistance (p = 1);
Li : i-th phase self induction coefficient (p = 1);
Mij : mutual induction coefficient of i-th phase coupled

with j-th phase (p = 1);
φ(θ) : rotor permanent magnet flux;
φc(θ) : total rotor flux chained with stator phase 1;
φci(θ) : total rotor flux chained with stator phase i-th;

ϕr : maximum value of function φ(θ);
ϕc : maximum value of function φc(θ);
Jr : rotor inertia momentum;
br : rotor linear friction coefficient;
τr : electromotive torque acting on the rotor;
τe : external load torque acting on the rotor;
γ : basic angular displacement;
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Fig. 2. Structure of a seven-phase motor in the case of single polar
expansion (p = 1). Vectors d and q denote the “direct” and “quadrature”
directions of the flux.

Fluxes φ(θ) and φc(θ) satisfy relations:

φc(θ) = p Nc φ(θ) = p Nc ϕr φ̄(θ) = ϕc φ̄(θ)

where ϕc = p Nc ϕr and φ̄(θ) is the rotor flux function
normalized with respect to its maximum value ϕr.

Let γ = 2π
m

denote the basic angular phase displace-
ment for electrical motors with m phases. The following
hypotheses are assumed:

H1) Function φ(θ) is periodic with period 2π;
H2) Function φ(θ) is an even function of θ;
H3) Function φ(θ + π

2
) is an odd function of θ;

H4) Flux φc(θ)|θ=0 chained with phase 1 is maximum;
H5) The motor electrical characteristics are homogeneous.

Let us introduce the state vectors q̇, q and the gener-

alized flux vector Φ(q):

q̇ =

[

I

ω

]

, q =

[

Q

θ

]

, Φ(q) =

[

Φc(θ)

0

]

where I and Φc are the current and flux vectors:
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.

The dynamic equations of the electric motors can be
obtained by using the following “Lagrangian” equation:

d

dt

(
∂K

∂q̇T

)

− ∂K

∂qT
= Ve −Re q̇ (1)

where K is the Lagrangian function of the system, Ve

is the extended input vector and Re is the extended
dissipating matrix. For multi-phase synchronous motors
the Lagrangian function K has the following structure:

K =
1

2
q̇T Le q̇ − q̇T Φ(q) (2)

where Le is the extended energy matrix of the system.
From (1) and (2) one obtains the dynamic equations:

Le q̈ = Ve −Re q̇ −
[
∂ΦT

∂qT
− ∂Φ

∂q

]

q̇ . (3)

The term ∂K
∂qT present in the left part of equation (1)

represents the back electromotive voltage generated by
the rotor movements. The last term of equation (3)
is a skew-symmetric term which represents an internal
energy redistribution. From (3) one directly obtains the
differential equations of the motor:
[
L 0
0 Jr

]

︸ ︷︷ ︸

Le

[
İ

ω̇r

]

︸ ︷︷ ︸

q̈

=−
[

R Kτ (θ)
−KT

τ (θ) br

]

︸ ︷︷ ︸

Re + We

[
I

ωr

]

︸ ︷︷ ︸

q̇

+

[
V

−τe

]

︸ ︷︷ ︸

Ve

(4)
Matrices L > 0, Re and We are defined as follows:

L=p
i j

|[ Mij ]|
1:m 1:m

, Re =

[

R 0

0 br

]

, We =

[

0 Kτ (θ)

−KT
τ (θ) 0

]

where Mii = Li, Mij = Mji and terms Kτ (θ) and R are,
respectively, the torque vector and the dissipating matrix:

Kτ (θ) =
∂ΦT

c(q)

∂θ
, R = p

i

|[ Ri ]|
1:m

. (5)

Function φc(θ) is an even and periodic function of period
2π (see H1 and H2) and therefore it can be developed in
Fourier series of cosines with only odd harmonics:

φc(θ) = ϕc φ̄(θ) = ϕc

∞∑

n=1:2

an cos(nθ). (6)

Flux vector Φc(θ) can be rewritten in a compact form as:

Φc(θ) = ϕc

h∣
∣
∣
∣
∣

[
∞∑

n=1:2

an cos[n(θ − h γ)]

]∣
∣
∣
∣
∣

0:m−1

. (7)



From (5), the torque vector Kτ (θ) can be expressed as
follows:

Kτ (θ) = p ϕc

h∣
∣
∣
∣
∣

[

−
∞∑

n=1:2

n an sin[n(θ−h γ)]

]∣
∣
∣
∣
∣

0:m−1

. (8)

Let us now consider the following orthonormal transfor-
mation:

tTT
ω = ωTt =

√
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sin(k (θ − h γ))
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∣
∣
∣
∣

1:2:m−2 0:m−1
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2
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

.

Matrix ωTt represents a multi-dimensional rotation in the
state space. Matrix ωTt(θ) is a function of the electrical
angle θ and transforms the electric variables V and I from
the original reference frame Σt to a transformed rotating
frame Σω. Applying transformation ωTt to matrices
L, R and Kτ (θ), from (4) one obtains the following
transformed system:
[

ωL 0

0 Jr

][
ω İ

ω̇r

]

=−
[

ωR+Jω
ωL ωKτ

− ωKT
τ br

][
ωI

ωr

]

+

[
ωV

−τe

]

(9)

where ωI = ωTt I, ωV = ωTt V, ωR = ωTt R
tTω =

R = p R Im and ωL = ωTt L
tTω. Let the self and

mutual induction coefficients of matrix L be defined as:
{

Mi j =M0 cos((i − j)γ)

Li =∆0 + M0

for i, j ∈ {1, 2, ..., m} .

The transformed matrix ωL has the following structure:

ωL= p












∆0+ m M0

2
0 0 0 · · · 0

0 ∆0+ m M0

2
0 0 · · · 0

0 0 ∆0 0 · · · 0
0 0 0 ∆0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · ∆0












,

where ∆0 and M0 are proper positive parameters. The
structure of transformed vector ωKτ (θ) is the following:

ωKτ (θ) = ωTt Kτ (θ) = −p ϕc

√
m

2
·

·








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









k∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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∞∑

n=0:2m

[(n+k) an+k+(n−k) an−k] sin(nθ)

∞∑

n=0:2m

[(n+k) an+k−(n−k) an−k] cos(nθ)











∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1:2:m−2

−
√

2
∞∑

n=m:2m

nan sin (nθ)



















(10)

Vector ωKτ (θ) can be easily computed knowing the
coefficients an of the Fourier series of the rotor flux,

see eq. (6). Note that vector ωKτ (θ) is composed only
by the harmonics sin(nθ) and cos(nθ) where n is an
integer number multiple of 2m. A detailed discussion of
the properties of the components of vector ωKτ (θ) can
be found in [8]. The structure of matrix Jω and vector ωI

in (9) are the following:

Jω =








k∣
∣
∣
∣

[
0 −k ω

k ω 0

]∣
∣
∣
∣

1:2:m−2

0

0 0
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

, ωI=








k∣
∣
∣
∣

[
ωIdk
ωIqk

]∣
∣
∣
∣

1:2:m−2

ωIm








where ω= θ̇ is the time-derivative of the electric angle θ
and ωIdk, ωIqk are, respectively, the direct and quadrature
components of the current vector ωI.

The POG scheme of the multi-phase electrical motor
in the transformed space Σω, see eq. (9), is shown in
Fig. 3. The elaboration blocks present between the power
sections 1 and 2 represent the Electrical part of the
system, while the blocks present between sections 3

and 4 represent the Mechanical part of the system. The
connection blocks present between sections 1 and 1̂ and
between sections 2 and 3 represent, respectively, the
state space transformation tTω between reference frames
Σt and Σω, and the energy and power conversion (without
accumulation nor dissipation) between the electrical and
mechanical parts of the motor.

Proposition 1: the torque vector ωKτ (θ) in (10) is con-
stant (i.e. it is not function of the electric angle θ) only for
the flux functions φ̄(θ) which can be expressed in Fourier
series as follows:

φ̄(θ) =

m−2∑

i=1:2

ai cos(i θ) (11)

Proof. From (10) it follows that the torque vector ωKτ (θ)
is constant and different from zero if and only if the
following relations hold:






akq(n, k) 6= 0 for n=0 and k∈{1:2:m−2}
(

akd(n, k) = 0

akq(n, k) = 0

)

for

(
n ∈ {2m : 2m : ∞}

k ∈ {1 : 2 : m − 2}

)

an = 0 for n ∈ {m : 2m : ∞}

(12)

where akq(n, k) = [(n + k) an+k − (n − k) an−k],
akd(n, k) = [(n + k) an+k + (n − k) an−k]. Since n >
k when n 6= 0 and ah = 0 when h < 0, relations (12)
can be rewritten in the following equivalent form:






ak 6= 0 for k ∈ {1 : 2 : m − 2}
(

an+k = 0

an−k = 0

)

for

(
n ∈ {2m : 2m : ∞}
k ∈ {1 : 2 : m − 2}

)

an = 0 for n ∈ {m : 2m : ∞}

(13)

that is

ai 6= 0 for i ∈ {1 : 2 : m − 2}
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Fig. 3. POG scheme of a multi-phase electrical motor in the transformed space Σω .

as stated in (11), so Proposition 1 is proved. �

Remark 1: flux function φ̄(θ) in (11) is valid only when
the torque vector ωKτ (θ) has the form given in (10)
which corresponds to the case of m independent motor
phases. In the opposite case of star-connected phases, the
last term of vector ωKτ (θ) is not present and relation (11)
must be substituted by φ̃(θ) = φ̄(θ) + φ̄m(θ) where the
new term φ̄m(θ) =

∑∞

i=m:2m ai cos(i θ) has no influence
on the torque generation.

All the possible constant vectors ωKτ (θ) are obtained
from (10) when n = 0:

ωKT
τ = ωKT

τ (θ)|n=0 =−ϕc p

√
m

2

[
k∣

∣
[

0 k ak

]∣
∣

1:2:m−2

0

]

. (14)

Main Proposition: among all the fluxes that provide a
constant vector ωKτ , see (11), the one that minimizes
the current module (and therefore the dissipated power)
is given by:

φ̄(θ) = am−2 cos((m − 2) θ). (15)

Proof. Let ωId denote the constant desired current. The
condition ωI = ωId can be achieved by using the
following control law:

ωV = (ωR+Jω
ωL) ωI+ ωKτ ωr−Ks(

ωI−ωId) (16)

where Ks > 0 is a diagonal matrix used for the tuning
of the control. Putting relation (16) in (9) one obtains the
dynamics:

ωL ω İ = −Ks(
ωI − ωId) . (17)

Defining ω Ĩ = (ωI− ωId) as the current error vector and
remembering that ωL ω İd = 0, from (17) one obtains

ωL ω ˙̃
I = −Ks

ω Ĩ .

With a proper choice of matrix Ks it is possible to give
the subsystems the desired dynamics. The time constant
τi of the i-th subsystem is given by

τi =
ωLi

Ksi

where ωLi and Ksi
are the i-th element on the diagonal

of matrix ωL and matrix Ks, respectively. Chosen the
desired time constants, matrix Ks is given by

Ks =
i

|[ Ksi
]|

1:m

, Ksi
=

ωLi

τi

. (18)

Since matrix Ks is positive definite, after a transient the
error vector ω Ĩ tends asymptotically to zero (i.e. ωI tends
to ωId) for all the desired constant currents ωId. The
desired torque τd generated by current vector ωId is given
by relation:

τd = ωKT
τ

ωId . (19)

The set of all the current vectors ωId satisfying relation
(19) is the following:

ωId = ωI0 + Ker[ ωKT
τ ] (20)

where ωI0 is a particular solution of system (19) and
Ker[ ωKT

τ ] is the kernel of the row matrix ωKT
τ . Among

all the vectors ωId given by (20) the one which has the
minimum modulus is the current vector ωId which is
parallel to vector ωKτ :

ωId =
τd

|ωKτ |
ωK̂τ (21)

where ωK̂τ denotes the versor of vector ωKτ . Note that
the modulus of current ωId is inversely proportional to the
modulus of vector ωKτ . So, among all the fluxes given
by (11), the one that minimizes the modulus of the current
ωId is the one which maximizes the modulus |ωKτ | of
vector ωKτ . From (14) it follows that the problem of
finding the (m − 1)/2 coefficients ak that maximize the
modulus of vector ωKτ is equivalent to the problem of
maximizing the following functional F (a):

F (a) =

√
√
√
√

m−2∑

k=1:2

(k ak)2

where a = {a1, a3, . . . , am−2}, under the constraint of
unitary maximum amplitude of the flux function φ̄(θ, a):

max
θ

φ̄(θ, a) = 1. (22)



This problem admits one single maximum for:

ak =

{
0 for k = [1 : 2 : m − 4]

1 for k = m − 2

which corresponds to the flux shape φ̄(θ) =
am−2 cos((m−2) θ) given in (15). So, for constant torque
τr the rotor flux φ̄(θ) which minimizes the modulus of
the motor current ωId (least power dissipation) is the
flux (15). �

In the case of m = 7, the functional F (a) is a function of
parameters a1, a3 and a5. Since these parameters satisfy
constraint (22), then it is always possible to express two
of them as a function of the third one. Fig. 4 shows
the functional F (a) as a function of the normalized
parameters a1/a5 and a3/a5: the maximum corresponds
to solution a1 = a3 = 0 and a5 = 1.
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Fig. 4. Functional F (a) as a function of parameters ak in the case of
m = 7.

Remark 2: eq. (14) clearly shows that all the odd compo-
nents of the torque vector ωKτ are zero and from (21) it
follows that the minimum vector ωId that generates the
desired torque τd is parallel to the torque vector ωKτ .
This leads to conclude that the direct components ωIdk

of vector ωId must be zero.

IV. SIMULATIONS

The Simulink scheme of the controlled electric motor
is shown in Fig. 5: the main central block corresponds to
the POG scheme shown in Fig. 3. The simulation results
presented in this Section have been obtained using the
following electrical and mechanical parameters: m = 9,
p = 1, R = 3 Ω, L0 = 0.1 H, M0 = 0.08 H, Nc = 30,
ϕr = 0.02 W, Jr = 0.5 kg m2, br = 1.8 N m s/rad and
τe = 0 Nm. The odd harmonics {1, 3, 5, 7} of the rotor
flux φ̄(θ) when m = 9 and p = 1 are shown in Fig. 6.
The motor phases are supposed to be star connected.
The input vector ωV is given by control law (16) where
ωId has been calculated using relation (19) considering
the desired torque τd = 10 Nm for t ∈ [0, 1.5] s and
τd = 5 Nm for t ∈ [1.5, 3] s. The elements Ksi

of
matrix Ks, see eq. (18), are chosen in order to have
the time constants τi = {0.33s, 0.25s, 0.17s, 0.09s} for
i ∈ {1, 3, 5, 7}. Figures 7÷10 show simulation results
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Fig. 5. Simulink scheme of the controlled electric motor.
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Fig. 6. Shapes of the rotor flux φ̄(θ): odd harmonics {1, 3, 5, 7}
when m = 9 and p = 1.

obtained for different harmonics of the rotor flux: 1-st
harmonic (magenta), 3-rd harmonic (green), 5-th harmo-
nic (blue) and 7-th harmonic (red). Fig. 7 shows the motor
velocity ωr and the rotor torque τr: note that the desired
value τd is reached with the time constants τi defined
above. Fig. 8 shows the modulus of the phase currents
ωI: note that the smallest current corresponds to the 7-th
harmonic (red line) of the rotor flux, as stated in (15).
The quadrature currents ωIqk , for k ∈ {1, 3, 5, 7}, are
shown in Fig. 9. Direct currents are not shown because
they are equal to zero. Figures 10 and 11 are obtained with
the same parameters and same control, but with saturated
input voltages |Vi| ≤ 14 V. Fig. 10 shows the motor
velocity ωr and the rotor torque τr: for growing values
of the torque vector, the counter electromotive torques
increase and the reached velocities decrease. Saturated
voltages V and currents I in the original reference frame
Σt for the 7-th harmonic are shown in Fig. 11: note that
when the input voltages Vi reach the saturation the desired
torque τd is no more obtained and a small ripple appears
on the final value, see the zoom in Fig. 10.

V. CONCLUSIONS

In this paper a m-phase permanent magnet synchro-
nous motor has been modeled using the Power-Oriented
Graphs (POG) technique. The obtained POG model is
very compact and can be easily implemented in Simulink.
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Fig. 8. Modulus of the phase currents ωI in the transformed reference
frame Σω .

A deep analysis of the torque vector has been carried out
in order to find the optimal shape of the rotor flux which
minimizes the module of the current vector. Simulation
results show the effectiveness of the realized model in
the case of a nine-phase star-connected motor.
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