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Abstract

The port Hamiltonian framework is a powerful tool for modeling a wide class of nonlinear systems such as robots
and, more generally, mechatronic systems. The standard approaches used for the control of the port Hamiltonian
systems are not applicable to a wide variety of mechatronic systems. This happens, for example, when the input
control variable acts directly on some dissipative components of the system. In these cases the controlled devices can
only dissipate power and the problem is to find a proper control law in order to meet the control requirements.

This paper proposes four control laws for the controlled dissipative components which allow to satisfy a set of
control requirements by acting on the energy stored in a subsection of the given system or by controlling the power
flowing through a physical section of the system. Although some important issues remain open, the example of the
semi-active suspension shows that some positive results can be achieved by applying the proposed approach.
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1. INTRODUCTION

From a mathematical perspective, the Port Con-
trolled Hamiltonian systems (PCH) (van der Schaft,
2000) are natural candidates to model many types of
real systems, as shown in the application examples
cited in (Ortega et al., 2002). Basically, PCH are sys-
tems defined with respect to a geometric structure
capturing the basic interconnection and dissipation
laws, and a Hamiltonian function given by the total
energy stored in the system.
The control of PCH is an interesting research topic
and outstanding results have already been obtained.
The main results presented so far consider the pos-
sibility to operate on the power-ports of the system
in order to obtain a controlled closed-loop system
that is still a PCH with desired Hamiltonian func-
tion, interconnection laws and damping, see (Ortega
et al., 2002) and the references therein. Another ap-
proach is the control by interconnection of PCH de-

scribed in (Garcia-Canseco et al., 2005). However
many mechatronic systems are not controlled by
means of the power ports, but by operating dissi-
pative components of the system such as variable
resistors, variable dampers, clutches, electro-valves,
etc. In these cases the issue is to find a proper con-
trol law that satisfies the control requirements fac-
ing the limitation that the energy can only be dis-
sipated by the controlled components. To the best
of our knowledge the problem of controlling a PCH
by means of dissipative components has not already
been addressed.
The key idea proposed in this paper is to divide a
PCH system into two or more PCH subsystems that
are connected by power preserving interconnections.
The control inputs are then chosen to control the
power flowing towards a certain subsystem or to
control the energy stored into that subsystem. To
this aim, a slight extension of the definition of PCH
is proposed to allow the description of a larger set of
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mechatronic systems and to obtain an explicit rep-
resentation of the power flowing towards a subsys-
tem. Thanks to the dissipative nature of the con-
trolled components the passivity properties of the
given PCH system are preserved.
The semi-active vehicle suspension (Savaresi et al.,
2003) is an example of mechatronic system with a
controllable dissipative element. By following the
proposed approach, some of the control laws already
presented in literature for the semi-active suspen-
sions are derived again and an energetic interpreta-
tion is given. Moreover, a new control law with im-
proved performances is proposed.
The paper is organized as follows: Sec. 2 gives a brief
introduction on Hamiltonian systems and extends
the definition of PCH. The proposed control laws for
the dissipative components are presented in Sec. 3.
An application example referring to a semi-active
vehicle suspension is described in Sec. 4.

2. AN EXTENSION OF THE PORT
HAMILTONIAN DEFINITION

The port-Hamiltonian framework is a powerful
means to model robotic, mechatronic and dynamic
systems. A brief recall of some definitions written
in (Van der Schaft, 2000) is given herein for reader
convenience. The Port Controlled Hamiltonian sys-
tems have the form:

ẋ = [J(x) − R(x)]
∂H

∂x
(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(1)

where

J(x) = −JT (x) and R(x) = RT (x) ≥ 0

One of the key feature of PCHs is the energy perspec-
tive in modeling the physical systems. The Hamil-
tonian H(x) represents the energy stored in the sys-
tem and the product yT u has the physical meaning
of the power flowing through the section character-
ized by power variables u and y. The power balance
in (1) is the following:

yT u =
dH

dt
+

∂H

∂x

T

R
∂H

∂x
≥

dH

dt

namely the power yT u supplied to the system is par-
tially stored as energy in H(x) and partially dissi-
pated in element R. Many PCHs can be obtained
connecting different subsystems by means of power
preserving interconnections. Let (u1, y1) and (u2, y2)
be the power ports of two PCHs, the general struc-
ture of a power preserving interconnection is the fol-
lowing:





u1

u2



 =





0 A

−AT 0









y1

y2



 (2)

where matrix A can also be time-varying and/or
state-dependent. With this interconnection the
power flows from one system to the other without
losses: yT

1
u1 = yT

1
A y2 = yT

2
AT y1 = −yT

2
u2, namely

the energy going out from one subsystem is exactly
the energy going into the other.
The PCH system (1) does not consider the possibil-
ity of external inputs that directly modify the dissi-
pation matrix R(x) or the connection matrix J(x).
This problem was partially addressed in (Perez et
al., 2004) where a matrix J depending on external
inputs is considered. As previously described, many
mechatronic systems have dissipative components
whose behaviour depends on an external input. To
represent mechatronic systems as a set of PCHs
connected by power preserving interconnections,
the definition (1) is not enough, as shown in the
example of Sec. 4. Many mechatronic systems show
a direct dissipative connection between the input
u and the output y. A resistor is the simplest ex-
ample. The PCH system (1) cannot describe such a
behaviour since the dissipation is only related to the
gradient of H(x). To take into account these phe-
nomena, the following PCH has to be considered:

ẋ =[J1(x, v) − R1(x, v)]
∂H

∂x
(x) + g(x, v) u

y = gT (x, v)
∂H

∂x
(x) − [J2(x, v) − R2(x, v)] u

Ji(x, v) = −JT
i (x, v) i = 1, 2

Ri(x, v) = RT
i (x, v) ≥ 0 i = 1, 2

(3)

where v is an external input vector that also may be
equal to u. Matrix J2(x, v) models a power preserv-
ing interconnection (for example an ideal switch)
and matrix R2(x, v) represents a dissipation ele-
ment. Matrix [J2(x, v) − R2(x, v)] has a meaning
similar to matrix “D” for linear systems.

The extended definition (3) preserves all the basic
properties of the PCHs and the energy perspective
in modeling the physical systems. The inner prod-
uct yT u has still the physical meaning of the power
flowing through the port (u, y). The power balance
of system (3) is the following:

dH

dt
=yT u −

∂HT

∂x
R1(x, v)

∂H

∂x
− uT R2(x, v)u (4)

From (4) it is straightforward to verify that (3) sat-
isfies the energy balance equation (EBE):

H(x(t)) − H(x(0)) =

∫ t

0

yT (τ)u(τ)dτ − D(t) (5)
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where D(t) is a nonnegative function which de-
scribes all the dissipations within the system.

3. CONTROL BY DISSIPATIVE
COMPONENTS

Many of the mechatronic systems described by
(3) are not controlled by using the input vector u
(which sometimes represents disturbances), but act-
ing on internal dissipative components. An example
is given by the semi-active suspension described in
the next section, where input u is an external dis-
turbance (the road profile velocity ẋr) and the con-
trolled variable is the damping coefficient b. Further
examples are the clutches (the torques on the axles
are not the control inputs, only the friction torque
is controlled) and some electro-valves (the main ex-
ternal inputs are usually the hydraulic supply pres-
sure and the reservoir pressure). If it is not possible
to modify the power flows on the power port (u, y),
the approaches (Ortega et al., 2002) and (Garcia-
Canseco et al., 2005) cannot be used. The control re-
quirements can be often satisfied only by operating
the dissipative components. This control problem,
to the best of our knowledge, has never been ad-
dressed for PCH and a full result is not yet available.
This paper proposes to control the dissipative com-
ponents by taking into account the power exchanges
between subsystems. This approach is based on two
steps:

1) translate the control requirements into a desired
energy level for a subsystem, or into a desired input
power towards a subsystem;

2) operate the dissipative components to obtain the
desired energy level or input power.

To help the solution of the first step the mecha-
tronic system is divided into two or more subsys-
tems of type (1) or (3), connected by a power pre-
serving interconnection of type (2). In this way the
input power and the energy stored in each subsys-
tem can be easily computed. The correspondence
between control requirements and energy levels or
input powers is the target of future research and it
is not addressed in this paper.
Concerning the second step, the control vector v is
chosen to control the energy stored in the subsys-
tem or the power entering the sybsystem. Four dif-
ferent control laws are proposed. Control laws C1
and C2 are designed to keep the entering power as
close as possible to a desired level Wd. The control
laws C3 and C4 are designed to control the energy
Hd stored into the subsystem. To simplify the nota-
tion, let d(v, x) denote the dissipated power:

d(v, x) =
∂HT

∂x
R1(x, v)

∂H

∂x
+uT R2(x, v) u (6)

The power balance (4) can be rewritten as follows:

Ḣ = yT u − d(v, x) (7)

C1) Let Wd be the desired value of the power enter-
ing a subsystem of type (1) or (3). From the power
balance (7), the desired power Wd (or its closest pos-
sible value) is obtained by choosing the control vec-
tor v as follows:

v :



















argmax(Ḣ+d) if argmax(Ḣ+d)<Wd

argmin(Ḣ+d) if argmin(Ḣ+d)>Wd

Wd = Ḣ+d(v, x) otherwise

(8)

The last line of system (8) means that the input

vector v is chosen to have Wd = Ḣ+d(v, x). In the

general case the term Ḣ+d = yT u is not easy to be
computed because it requires an exact knowledge of
all the system parameters. However in some appli-
cations it becomes simple, as in the example shown
in Sec. 4. The first two conditions of system (8) are
used when the desired power Wd cannot be obtained:
in these cases the input vector v is chosen to have
the input power yT u as close as possible to the de-
sired value Wd.

C2) When the control requirement is to minimize
or maximize the power Wd, control law (8) simpli-
fies as follows:











v : argmax(Ḣ+d(v, x)) if Wd = +∞

v : argmin(Ḣ+d(v, x)) if Wd = −∞

(9)

These relations are obtained from (8) choosing Wd =
−∞ when power Wd is to be minimized and choos-
ing Wd = ∞ when Wd is to be maximized. As shown
in the next section, these control laws are much sim-
pler to be implemented since only the maximization
(or the minimization) of function Ḣ(x)+d(v, x) is
required.

C3) Let Hd be the desired level of energy for the
considered subsystem, let f(z) be an odd function
of the variable z (i.e. f(z) z > 0 if z 6= 0) and let
function:

Ḣs = −f(H(x) − Hd) (10)

denote the desired time-derivative of the energy
H(x) stored in the subsystem. From (7) it follows

that the desired function Ḣs can be obtained using
the following control law:

v :



















argmax(yT u−d) if argmax(yT u−d)<Ḣs

argmin(yT u−d) if argmin(yT u−d)>Ḣs

Ḣs = yT u − d otherwise

(11)
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The desired value Ḣs(x) is obtained only in the third
case. The first two conditions are used when the
value Ḣs(x) cannot be obtained: in these cases vec-
tor v is chosen to have the smallest difference.

C4) If the minimum or maximum values of the time-

derivative Ḣs are used in (11), one obtains the fol-
lowing simplified control law:

v :







argmax(yT u−d(v, x)) if H(x) < Hd

argmin(yT u−d(v, x)) if H(x) ≥ Hd

(12)

This control law is much simpler to be implemented,
if compaerd to (11), because it requires only the
maximization (or minimization) of function yT u−
d(v, x).

Remark 1. As shown in equations (8) and (11), it
is not ensured that the control requirements can al-
ways be satisfied by operating on the control vector
v. This is mainly due to the fact that the control
action of the term d(v, x) may be limited in ampli-
tude, and vector u cannot be used as control input
for the system.

Remark 2. In the general case the control laws (8),
(9), (11) and (12) may have many solutions for dif-
ferent values of the control vector v. In these cases,
if a particular system structure is not given, it will
not be possible to define a criterion for the choice of
the best solution.

4. CONTROL OF SEMI-ACTIVE
SUSPENSIONS

The semi-active suspensions are a typical exam-
ple of a mechatronic system controlled by acting on
a dissipative component. A quarter-car model with
a semi-active suspension system is shown in Fig. 1.
The damping coefficient b of the shock absorber is
controlled by an electro-valve. The typical control
problem is to choose the value of the damping co-
efficient b in order to maximize the comfort for the
passengers. The ideal solution is to have the body
(sprung mass) speed and acceleration as close as
possible to zero in order to minimize the movements
and the forces perceived by the passengers. A de-
tailed description of the semi-active suspensions can
be found in (Savaresi et al., 2003) and in the refer-
ences therein. This section shows how some control
laws already known in literature for the semi-active
suspensions can be derived again by using the pro-
posed approach. Moreover, a new control law with
slightly better performances is proposed. The vari-
ables shown in Fig. 1 have the following meanings:
Ms is the quarter-car body mass, Mt is the total un-
sprung mass (tire, wheel, brakes, suspension links,
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Fig. 1. Graphical representation of a quarter-car model with
semi-active suspension.

etc.), b and bd are the real and the desired damping
coefficients of the shock-absorber, K and Kt are, re-
spectively, the stiffness coefficients of the suspension
spring and of the tire. Finally, xs, xt and xr are the
vertical positions of the body mass, the unsprung
mass and the road profile, respectively. The PCH
model of the system shown in Fig. 1 is the following:

H(x) =
1

2
Ms ẋ2

s +
1

2
Mt ẋ2

t +
1

2
K x2

st +
1

2
Kt x2

tr





















ẍs

ẍt

ẋst

ẋtr





















=



























−b

M2
s

b

MsMt

−1

Ms

0

b

MsMt

−b

M2
t

1

Mt

−1

Mt

1

Ms

−1

Mt

0 0

0
1

Mt

0 0















































Ms ẋs

Mt ẋt

K xst

Ktxtr





















+





















0

0

0

−1





















ẋr

y =
[

0 0 0 −1
] [

Msẋs Mtẋt K xst Ktxtr

]T

The gravitational forces have been compensated by
the springs pre-load and they do not appear in the
equations. The state variables xst = xs − xt and
xtr = xt − xr represent, respectively, the deforma-
tions of the spring and of the tire with respect to the
equilibrium length.
The dissipation coefficient b depends on the actua-
tor dynamics. The actuator is usually described by
a first order linear system with saturation:

ḃ =



















0 if b = bmax and bd ≥ bmax

0 if b = bmin and bd ≤ bmin

β (bd − b) else

where bd is the desired damping, bmax > bmin > 0
and β > 0 is the bandwidth of the actuator.
Remark 3. For the sake of clarity the described
suspension system is linear as in (Savaresi et al.,
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2003). For a real suspension system both K and b are
nonlinear functions of the state variables. However
the results presented in the following section hold
also for the nonlinear case.

4.1. Partition of the PCH

The semi-active suspension system can be parti-
tioned in the following three connected PCHs (the
dashed boxes of Fig. 1):

1) Subsystem 1, sprung mass PCH:

H1 =
1

2
Ms ẋ2

s

ẍs =
[

0
]

Ms ẋs +

[

1

Ms

]

u1

y1 =

[

1

Ms

]

∂H1

∂ẋs

= ẋs

(13)

2) Subsystem 2, spring-damper PCH:

H2 =
1

2
K x2

st

ẋst =
[

0
]

Kxst +
[

1 −1
]

[

u2,1

u2,2

]

[

y2,1

y2,2

]

=

[

1

−1

]

K xst +

[

b −b

−b b

] [

u2,1

u2,2

]

(14)

3) Subsystem 3, wheel and tire PCH:

H3=
1

2
Mt ẋ2

t +
1

2
Kt x2

tr







ẍt

ẋtr






=







0
−1

Mt
1

Mt

0













Mt ẋt

Kt xtr






+







1

Mt

0

0 −1













u3,1

ẋr













y3,1

y3,2






=







1

Mt

0

0 −1













Mt ẋt

Kt xtr






=







ẋt

−Kt xtr







(15)

The three subsystems are connected by the following
power preserving structures:
[

u2,1

u1

]

=

[

0 1

−1 0

] [

y2,1

y1

]

→

[

u2,1

u1

]

=

[

ẋs

−Kxst−bẋst

]

[

u2,2

u3,1

]

=

[

0 1

−1 0

] [

y2,2

y3,1

]

→

[

u2,2

u3,1

]

=

[

ẋt

Kxst+bẋst

]

4.2. Passive suspensions

Although the passive suspensions are not control-
lable, their behavior from a power/energy perspec-
tive is now analyzed to get some insight about the

proposed approach. The energy stored in the spring-
damper subsystem 2 is:

H2 =
1

2
K x2

st ≥ 0

and the power yT
2

u2 entering the subsystem is:

yT
2

u2 =Ḣ2 + d2(b, x)=K xst ẋst + b ẋ2

st (16)

If the control requirement is to dissipate in the sub-
system as much power as possible, then the control
law (9) with W2d = +∞ can be used:

b : argmax(K xst ẋst + b ẋ2

st) → bd = bmax

that is the damping coefficient b should be constant
at its maximum value, bd = bmax, and therefore a
passive suspension is enough to meet the require-
ment. However it is well known that this solution is
not optimal both for handling and for comfort.

4.3. Classic two-state sky-hook control

The target of the sky-hook control is to keep the
body speed ẋs and the body acceleration ẍs as close
as possible to zero facing the road profile ẋr . The
classic two-state “sky-hook” control law known in
literature, see (Savaresi et al., 2003), is:

bd =

{

bmax if ẋst ẋs ≥ 0

bmin else
(17)

The kinetic energy H1(ẋs) of subsystem 1, see (13),
is always positive. Let us consider the control law
(12) with zero energy level for the body: H1d = 0.
In this case we have:

yT
1

u1−d1(b, x) =−b ẋsẋst−Kxst ẋs

and only the second condition of (12) is possible.
Function yT

1
u1−d1(b, x) can be minimized only by

minimizing the term −b ẋsẋst. This leads to the
same condition bd = bmin given by control law (17).

4.4. Acceleration-Driven-Damper control

The Acceleration-Driven-Damper (ADD) control
is proposed in (Savaresi et al., 2003). Under mild as-
sumptions, it has been demonstrated that ADD con-
trol is “optimal” in the sense that it minimizes the
vertical body acceleration ẍs when no road-preview
is available. The ADD control is defined as follows:

bd =







bmax if ẍs ẋst ≥ 0

bmin else
(18)

This control law can also be obtained, in an alter-
native way, by using the control law C2 given in (9).
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Consider the subsystem 2 described in (14). Let the
desired power W2d be the following:

W2d =

{

+∞ if yT
2

u2 ≤ 0

−∞ if yT
2

u2 > 0
(19)

where yT
2

u2 = K xst ẋst+b ẋ2

st is the power entering
the subsystem, see eq. (16). Consequently the con-
trol requirement is to keep the entering power yT

2
u2

as close as possible to zero: if yT
2

u2 > 0 (yT
2

u2 < 0)
the requested power W2d is the lowest (highest) pos-
sible. This control law mimics a sort of sliding mode
control of the power. According to (9) and (19) the
desired damping coefficient bd must be chosen as fol-
lows:

bd =

{

bmax if yT
2

u2 ≤ 0

bmin else
(20)

This control is exactly the same as in (18) since:

yT
2

u2 = (K xst + b ẋst) ẋst = −Ms ẍs ẋst (21)

The last two examples show that the control laws C2
and C4 may be simple to be implemented since only
a partial knowledge of the system state is required.

4.5. Power-Driven-Damper control

Control law (18) may show an oscillating behav-
ior on bd if the bandwidth β is wide enough and if
bmax ẋ2

st + K xst ẋst > 0 and bmin ẋ2

st + K xst ẋst <
0. This is due to the direct dependence of ẍs (or
y2) on the damping coefficient b, namely if β → ∞
the controlled variable b affects instantaneously the
measured variable ẍs.
From (19) (but not from (18)!) it is clear that the
ADD control mimics a sort of sliding mode control
of the power whose aim is to steer the power yT

2
u2

to zero. This observation leads to an alternative con-
trol strategy which can be obtained from control law
C1, see (8), when the requirement W2d = 0 is con-
sidered. Matching (8), (16) and (21) we obtain the
following new Power-Driven-Damper (PDD) control
law:

bd =































bmax if Kxstẋst+bmaxẋ2

st < 0

bmin if Kxstẋst+bminẋ2

st ≥ 0

(bmax+bmin)/2 if ẋst = 0 and xst 6= 0

−Kxst/ẋst otherwise

(22)
The first two equations in (22) lead to the same be-
haviour as in (19). The last two equations deal with
the problem of the oscillations: the desired damping
bd is indeed set to obtain exactly W2 = 0, namely

it equals the equivalent control bs in the sliding
mode sense. This value bs belongs to the interval
[bmin , bmax]. When ẋst = 0 the power W2 = yT

2
u2

equals the desired value W2d = 0 and the control
requirement is satisfied for any damping b. In this
case the desired damping bd is set to the average
damping value during the transients (xst 6= 0) and
it is set to the minimum in the steady state condi-
tion (xst = ẋst = 0).
The advantages of the proposed PDD control are
clear from the simulation results shown in the next
section. The cost is the need for the knowledge of
the spring stiffness K and for the exact control of
the damping coefficient b, both required by (22).

4.6. Simulation results

The behaviour of the PDD control is compared to
the ADD control in Figs. 2, 3 and 4. Since the ADD
control is almost optimal in terms of body accelera-
tion minimization (maximum comfort) the compari-
son does not take into account the other less efficient
control strategies. This comparison can be found in
(Savaresi et al., 2003) and in (Savaresi et al., 2004).
The parameters for the simulations and the comfort
evaluation method are the same as in (Savaresi et
al., 2004).
The comparison of the approximated frequency re-
sponses is shown in Fig. 2. The lower is the fre-
quency response the better is the control algorithm:
the ADD is slightly better in the frequency range
from 2 to 10 Hz, conversely the PDD is slightly bet-
ter at low and high frequencies.
The time responses shown in Figs. 3 and 4 under-
lines the advantages of the PDD control in terms
of lower jerk for both sinusoidal and step road pro-
files. Concerning the jerk, the improvement is evi-
dent. This improvement is not paid in terms of a
worsening of the body acceleration, conversely for
both the time responses the acceleration behaviors
are quite similar: the PDD is slightly better in the
step response while the ADD is slightly better for
the tone response.

5. CONCLUSIONS

The paper addressed the problem of controlling a
port Hamiltonian system by operating on its dissipa-
tive coefficients. The key idea is to divide the Hamil-
tonian system into two or more subsystems that are
connected by power preserving interconnections.
The control inputs have been chosen to control the
stored energy or the dissipated power of certain par-
ticular subsystems. Only some preliminary results
have been presented, many other problems and ques-
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Fig. 3. Time response to a pure 4.5 Hz sinusoidal road profile:
body acceleration (top) and jerk (bottom) for PDD (solid)
and ADD (dashed).
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